Multi defect detection and analysis of electron microscopy images with
deep learning
- URL: http://arxiv.org/abs/2108.08883v1
- Date: Thu, 19 Aug 2021 19:16:24 GMT
- Title: Multi defect detection and analysis of electron microscopy images with
deep learning
- Authors: Mingren Shen, Guanzhao Li, Dongxia Wu, Yuhan Liu, Jacob Greaves, Wei
Hao, Nathaniel J. Krakauer, Leah Krudy, Jacob Perez, Varun Sreenivasan, Bryan
Sanchez, Oigimer Torres, Wei Li, Kevin Field, and Dane Morgan
- Abstract summary: We show that a deep learning based Faster R-CNN analysis system has a performance comparable to human analysis with relatively small training data sets.
This study proves the promising ability to apply deep learning to assist the development of automated microscopy data analysis.
- Score: 5.3265578744942585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electron microscopy is widely used to explore defects in crystal structures,
but human detecting of defects is often time-consuming, error-prone, and
unreliable, and is not scalable to large numbers of images or real-time
analysis. In this work, we discuss the application of machine learning
approaches to find the location and geometry of different defect clusters in
irradiated steels. We show that a deep learning based Faster R-CNN analysis
system has a performance comparable to human analysis with relatively small
training data sets. This study proves the promising ability to apply deep
learning to assist the development of automated microscopy data analysis even
when multiple features are present and paves the way for fast, scalable, and
reliable analysis systems for massive amounts of modern electron microscopy
data.
Related papers
- Combining unsupervised and supervised learning in microscopy enables
defect analysis of a full 4H-SiC wafer [0.0]
We combine various image analysis and data mining techniques for creating an automated image analysis pipeline.
This allows for extracting the type and position of all defects in a microscopy image of a KOH-etched 4H-SiC wafer.
arXiv Detail & Related papers (2024-02-20T20:04:23Z) - Deep Learning of Crystalline Defects from TEM images: A Solution for the
Problem of "Never Enough Training Data" [0.0]
In-situ TEM experiments can provide important insights into how dislocations behave and move.
The analysis of individual video frames can provide useful insights but is limited by the capabilities of automated identification.
In this work, a parametric model for generating synthetic training data for segmentation of dislocations is developed.
arXiv Detail & Related papers (2023-07-12T17:37:46Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - Fast spline detection in high density microscopy data [0.0]
In microscopy studies of multi-organism systems, the problem of collision and overlap remains challenging.
Here, we develop a novel end-to-end deep learning approach to extract precise shape trajectories of generally motile and overlapping splines.
We present it in the setting of and exemplify its usability on dense experiments of crawling Caenorhabditis elegans.
arXiv Detail & Related papers (2023-01-11T13:40:05Z) - Disentangling multiple scattering with deep learning: application to
strain mapping from electron diffraction patterns [48.53244254413104]
We implement a deep neural network called FCU-Net to invert highly nonlinear electron diffraction patterns into quantitative structure factor images.
We trained the FCU-Net using over 200,000 unique dynamical diffraction patterns which include many different combinations of crystal structures.
Our simulated diffraction pattern library, implementation of FCU-Net, and trained model weights are freely available in open source repositories.
arXiv Detail & Related papers (2022-02-01T03:53:39Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
The aim of the work is to study the possibility of the machine learning application to solve the tasks set for TAIGA-IACT.
The method of Convolutional Neural Networks (CNN) was applied to process and analyze Monte-Carlo events simulated with CORSIKA.
arXiv Detail & Related papers (2021-12-19T15:17:20Z) - Increasing a microscope's effective field of view via overlapped imaging
and machine learning [4.23935174235373]
This work demonstrates a multi-lens microscopic imaging system that overlaps multiple independent fields of view on a single sensor for high-efficiency automated specimen analysis.
arXiv Detail & Related papers (2021-10-10T22:52:36Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Learning-based Defect Recognition for Quasi-Periodic Microscope Images [0.0]
We propose a semi-supervised machine learning method that assists in the detection of lattice defects from atomic resolution microscope images.
It involves a convolutional neural network that classifies image patches as defective or non-defective, a graph-based that chooses one non-defective patch as a model, and finally an automatically generated convolutional filter bank.
The algorithm is tested on III-V/Si crystalline materials and successfully evaluated against different metrics, showing promising results even for extremely small training data sets.
arXiv Detail & Related papers (2020-07-02T18:00:02Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.