Uniformity Testing in the Shuffle Model: Simpler, Better, Faster
- URL: http://arxiv.org/abs/2108.08987v1
- Date: Fri, 20 Aug 2021 03:43:12 GMT
- Title: Uniformity Testing in the Shuffle Model: Simpler, Better, Faster
- Authors: Cl\'ement L. Canonne and Hongyi Lyu
- Abstract summary: Uniformity testing, or testing whether independent observations are uniformly distributed, is the question in distribution testing.
In this work, we considerably simplify the analysis of the known uniformity testing algorithm in the shuffle model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uniformity testing, or testing whether independent observations are uniformly
distributed, is the prototypical question in distribution testing. Over the
past years, a line of work has been focusing on uniformity testing under
privacy constraints on the data, and obtained private and data-efficient
algorithms under various privacy models such as central differential privacy
(DP), local privacy (LDP), pan-privacy, and, very recently, the shuffle model
of differential privacy.
In this work, we considerably simplify the analysis of the known uniformity
testing algorithm in the shuffle model, and, using a recent result on "privacy
amplification via shuffling," provide an alternative algorithm attaining the
same guarantees with an elementary and streamlined argument.
Related papers
- Minimax Optimal Two-Sample Testing under Local Differential Privacy [3.3317825075368908]
We explore the trade-off between privacy and statistical utility in private two-sample testing under local differential privacy (LDP)
We introduce private permutation tests using practical privacy mechanisms such as Laplace, discrete Laplace, and Google's RAPPOR.
We study continuous data via binning and study its uniform separation rates under LDP over H"older and Besov smoothness classes.
arXiv Detail & Related papers (2024-11-13T22:44:25Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
We show how to shuffle $(epsilon_i,delta_i)$-PLDP setting with personalized privacy parameters.
We prove that shuffled $(epsilon_i,delta_i)$-PLDP process approximately preserves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
arXiv Detail & Related papers (2023-12-22T02:31:46Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
We consider partial differential privacy (DP), which allows quantifying the privacy guarantee on a per-attribute basis.
In this work, we study several basic data analysis and learning tasks, and design algorithms whose per-attribute privacy parameter is smaller that the best possible privacy parameter for the entire record of a person.
arXiv Detail & Related papers (2022-09-08T22:43:50Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
differential privacy has emerged as the gold standard of privacy, however, when it comes to sharing sparse datasets.
In this work, we consider a variation of $k$-anonymity, which we call smooth-$k$-anonymity, and design simple large-scale algorithms that efficiently provide smooth-$k$-anonymity.
arXiv Detail & Related papers (2022-07-13T17:09:25Z) - Privacy Amplification via Shuffled Check-Ins [2.3333090554192615]
We study a protocol for distributed computation called shuffled check-in.
It achieves strong privacy guarantees without requiring any further trust assumptions beyond a trusted shuffler.
We show that shuffled check-in achieves tight privacy guarantees through privacy amplification.
arXiv Detail & Related papers (2022-06-07T09:55:15Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - Renyi Differential Privacy of the Subsampled Shuffle Model in
Distributed Learning [7.197592390105457]
We study privacy in a distributed learning framework, where clients collaboratively build a learning model iteratively through interactions with a server from whom we need privacy.
Motivated by optimization and the federated learning (FL) paradigm, we focus on the case where a small fraction of data samples are randomly sub-sampled in each round.
To obtain even stronger local privacy guarantees, we study this in the shuffle privacy model, where each client randomizes its response using a local differentially private (LDP) mechanism.
arXiv Detail & Related papers (2021-07-19T11:43:24Z) - Improved, Deterministic Smoothing for L1 Certified Robustness [119.86676998327864]
We propose a non-additive and deterministic smoothing method, Deterministic Smoothing with Splitting Noise (DSSN)
In contrast to uniform additive smoothing, the SSN certification does not require the random noise components used to be independent.
This is the first work to provide deterministic "randomized smoothing" for a norm-based adversarial threat model.
arXiv Detail & Related papers (2021-03-17T21:49:53Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
We show that random shuffling amplifies differential privacy guarantees of locally randomized data.
Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees.
arXiv Detail & Related papers (2020-12-23T17:07:26Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.