Structure-Preserving Deraining with Residue Channel Prior Guidance
- URL: http://arxiv.org/abs/2108.09079v1
- Date: Fri, 20 Aug 2021 09:09:56 GMT
- Title: Structure-Preserving Deraining with Residue Channel Prior Guidance
- Authors: Qiaosi Yi, Juncheng Li, Qinyan Dai, Faming Fang, Guixu Zhang, and
Tieyong Zeng
- Abstract summary: Single image deraining is important for many high-level computer vision tasks.
We propose a Structure-Preserving Deraining Network (SPDNet) with RCP guidance.
SPDNet directly generates high-quality rain-free images with clear and accurate structures under RCP guidance.
- Score: 33.41254475191555
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Single image deraining is important for many high-level computer vision tasks
since the rain streaks can severely degrade the visibility of images, thereby
affecting the recognition and analysis of the image. Recently, many CNN-based
methods have been proposed for rain removal. Although these methods can remove
part of the rain streaks, it is difficult for them to adapt to real-world
scenarios and restore high-quality rain-free images with clear and accurate
structures. To solve this problem, we propose a Structure-Preserving Deraining
Network (SPDNet) with RCP guidance. SPDNet directly generates high-quality
rain-free images with clear and accurate structures under the guidance of RCP
but does not rely on any rain-generating assumptions. Specifically, we found
that the RCP of images contains more accurate structural information than rainy
images. Therefore, we introduced it to our deraining network to protect
structure information of the rain-free image. Meanwhile, a Wavelet-based
Multi-Level Module (WMLM) is proposed as the backbone for learning the
background information of rainy images and an Interactive Fusion Module (IFM)
is designed to make full use of RCP information. In addition, an iterative
guidance strategy is proposed to gradually improve the accuracy of RCP,
refining the result in a progressive path. Extensive experimental results on
both synthetic and real-world datasets demonstrate that the proposed model
achieves new state-of-the-art results. Code: https://github.com/Joyies/SPDNet
Related papers
- MDeRainNet: An Efficient Neural Network for Rain Streak Removal from Macro-pixel Images [44.83349966064718]
We propose an efficient network, called MDeRainNet, for rain streak removal from LF images.
The proposed network adopts a multi-scale encoder-decoder architecture, which directly works on Macro-pixel images (MPIs) to improve the rain removal performance.
To improve the performance of our network on real-world rainy scenes, we propose a novel semi-supervised learning framework for our MDeRainNet.
arXiv Detail & Related papers (2024-06-15T14:47:02Z) - RainyScape: Unsupervised Rainy Scene Reconstruction using Decoupled Neural Rendering [50.14860376758962]
We propose RainyScape, an unsupervised framework for reconstructing clean scenes from a collection of multi-view rainy images.
Based on the spectral bias property of neural networks, we first optimize the neural rendering pipeline to obtain a low-frequency scene representation.
We jointly optimize the two modules, driven by the proposed adaptive direction-sensitive gradient-based reconstruction loss.
arXiv Detail & Related papers (2024-04-17T14:07:22Z) - Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
Rain streaks significantly decrease the visibility of captured images.
Existing deep learning-based image deraining methods employ manually crafted networks and learn a straightforward projection from rainy images to clear images.
We propose a contrastive learning-based image deraining method that investigates the correlation between rainy and clear images.
arXiv Detail & Related papers (2023-05-29T13:51:41Z) - From heavy rain removal to detail restoration: A faster and better
network [26.60300982543502]
In this work, we introduce a simple dual-stage progressive enhancement network, denoted as DPENet, to achieve effective deraining.
This approach comprises two key modules, a rain streaks removal network (R$2$Net) focusing on accurate rain removal, and a details reconstruction network (DRNet) designed to recover the textural details of rain-free images.
arXiv Detail & Related papers (2022-05-07T04:55:05Z) - Semi-DRDNet Semi-supervised Detail-recovery Image Deraining Network via
Unpaired Contrastive Learning [59.22620253308322]
We propose a semi-supervised detail-recovery image deraining network (termed as Semi-DRDNet)
As a semi-supervised learning paradigm, Semi-DRDNet operates smoothly on both synthetic and real-world rainy data in terms of deraining robustness and detail accuracy.
arXiv Detail & Related papers (2022-04-06T12:35:27Z) - RCDNet: An Interpretable Rain Convolutional Dictionary Network for
Single Image Deraining [49.99207211126791]
We specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet)
RCDNet embeds the intrinsic priors of rain streaks and has clear interpretability.
By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted.
arXiv Detail & Related papers (2021-07-14T16:08:11Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z) - A Model-driven Deep Neural Network for Single Image Rain Removal [52.787356046951494]
We propose a model-driven deep neural network for the task, with fully interpretable network structures.
Based on the convolutional dictionary learning mechanism for representing rain, we propose a novel single image deraining model.
All the rain kernels and operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers.
arXiv Detail & Related papers (2020-05-04T09:13:25Z) - Physical Model Guided Deep Image Deraining [10.14977592107907]
Single image deraining is an urgent task because the degraded rainy image makes many computer vision systems fail to work.
We propose a novel network based on physical model guided learning for single image deraining.
arXiv Detail & Related papers (2020-03-30T07:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.