Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining
- URL: http://arxiv.org/abs/2503.18703v1
- Date: Mon, 24 Mar 2025 14:15:48 GMT
- Title: Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining
- Authors: Guanglu Dong, Tianheng Zheng, Yuanzhouhan Cao, Linbo Qing, Chao Ren,
- Abstract summary: We propose a novel Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining framework, CSUD, to tackle the challenges.<n>During training with unpaired data, CSUD is capable of generating high-quality pseudo clean and rainy image pairs.<n>Experiments on multiple synthetic and real-world datasets demonstrate that the deraining performance of CSUD surpasses other state-of-the-art unsupervised methods.
- Score: 6.748447305270562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, deep image deraining models based on paired datasets have made a series of remarkable progress. However, they cannot be well applied in real-world applications due to the difficulty of obtaining real paired datasets and the poor generalization performance. In this paper, we propose a novel Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining framework, CSUD, to tackle the aforementioned challenges. During training with unpaired data, CSUD is capable of generating high-quality pseudo clean and rainy image pairs which are used to enhance the performance of deraining network. Specifically, to preserve more image background details while transferring rain streaks from rainy images to the unpaired clean images, we propose a novel Channel Consistency Loss (CCLoss) by introducing the Channel Consistency Prior (CCP) of rain streaks into training process, thereby ensuring that the generated pseudo rainy images closely resemble the real ones. Furthermore, we propose a novel Self-Reconstruction (SR) strategy to alleviate the redundant information transfer problem of the generator, further improving the deraining performance and the generalization capability of our method. Extensive experiments on multiple synthetic and real-world datasets demonstrate that the deraining performance of CSUD surpasses other state-of-the-art unsupervised methods and CSUD exhibits superior generalization capability.
Related papers
- DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
Rain streaks significantly decrease the visibility of captured images.
Existing deep learning-based image deraining methods employ manually crafted networks and learn a straightforward projection from rainy images to clear images.
We propose a contrastive learning-based image deraining method that investigates the correlation between rainy and clear images.
arXiv Detail & Related papers (2023-05-29T13:51:41Z) - Single Image Deraining via Feature-based Deep Convolutional Neural
Network [13.39233717329633]
A single image deraining algorithm based on the combination of data-driven and model-based approaches is proposed.
Experiments show that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both qualitative and quantitative measures.
arXiv Detail & Related papers (2023-05-03T13:12:51Z) - Rethinking Real-world Image Deraining via An Unpaired Degradation-Conditioned Diffusion Model [51.49854435403139]
We propose RainDiff, the first real-world image deraining paradigm based on diffusion models.
We introduce a stable and non-adversarial unpaired cycle-consistent architecture that can be trained, end-to-end, with only unpaired data for supervision.
We also propose a degradation-conditioned diffusion model that refines the desired output via a diffusive generative process conditioned by learned priors of multiple rain degradations.
arXiv Detail & Related papers (2023-01-23T13:34:01Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - Structure-Preserving Deraining with Residue Channel Prior Guidance [33.41254475191555]
Single image deraining is important for many high-level computer vision tasks.
We propose a Structure-Preserving Deraining Network (SPDNet) with RCP guidance.
SPDNet directly generates high-quality rain-free images with clear and accurate structures under RCP guidance.
arXiv Detail & Related papers (2021-08-20T09:09:56Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
This study proposes a new network architecture by enforcing the output residual of the network possess intrinsic rain structures.
Such a structural residual setting guarantees the rain layer extracted by the network finely comply with the prior knowledge of general rain streaks.
arXiv Detail & Related papers (2020-05-19T05:52:13Z) - Semi-DerainGAN: A New Semi-supervised Single Image Deraining Network [45.78251508028359]
We propose a new semi-supervised GAN-based deraining network termed Semi-DerainGAN.
It can use both synthetic and real rainy images in a uniform network using two supervised and unsupervised processes.
To deliver better deraining results, we design a paired discriminator for distinguishing the real pairs from fake pairs.
arXiv Detail & Related papers (2020-01-23T07:01:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.