論文の概要: Extracting Radiological Findings With Normalized Anatomical Information
Using a Span-Based BERT Relation Extraction Model
- arxiv url: http://arxiv.org/abs/2108.09211v1
- Date: Fri, 20 Aug 2021 15:02:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-23 13:30:52.934402
- Title: Extracting Radiological Findings With Normalized Anatomical Information
Using a Span-Based BERT Relation Extraction Model
- Title(参考訳): Span-based BERTリレーション抽出モデルを用いた正常化解剖情報による放射線学的所見の抽出
- Authors: Kevin Lybarger, Aashka Damani, Martin Gunn, Ozlem Uzuner, Meliha
Yetisgen
- Abstract要約: 医用イメージングレポートは、放射線技師の発見と観察を精査する。
このテキストエンコードされた情報の大規模利用には、構造化されていないテキストを構造化された意味表現に変換する必要がある。
放射線学的所見に関連する放射線学的報告における解剖学的情報の抽出と正規化について検討する。
- 参考スコア(独自算出の注目度): 0.20999222360659603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical imaging is critical to the diagnosis and treatment of numerous
medical problems, including many forms of cancer. Medical imaging reports
distill the findings and observations of radiologists, creating an unstructured
textual representation of unstructured medical images. Large-scale use of this
text-encoded information requires converting the unstructured text to a
structured, semantic representation. We explore the extraction and
normalization of anatomical information in radiology reports that is associated
with radiological findings. We investigate this extraction and normalization
task using a span-based relation extraction model that jointly extracts
entities and relations using BERT. This work examines the factors that
influence extraction and normalization performance, including the body
part/organ system, frequency of occurrence, span length, and span diversity. It
discusses approaches for improving performance and creating high-quality
semantic representations of radiological phenomena.
- Abstract(参考訳): 医療画像は、多くのがんを含む多くの医学的問題の診断と治療に重要である。
医用イメージングレポートは、放射線医の発見と観察を精査し、非構造的医療画像の非構造的テキスト表現を作成する。
このテキストエンコードされた情報の大規模利用には、構造化されていないテキストを構造化された意味表現に変換する必要がある。
放射線学的所見に関連する放射線学的報告における解剖学的情報の抽出と正規化について検討する。
本研究では,BERTを用いてエンティティと関係を共同抽出するスパンベース関係抽出モデルを用いて,この抽出と正規化タスクについて検討する。
本研究は, 身体部分・臓器系, 発生頻度, 長さ, 多様性など, 抽出および正規化性能に影響を与える要因について検討する。
放射学現象の性能向上と高品質な意味表現の創出について論じる。
関連論文リスト
- Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
胸部X線レポート生成のための新しい方法である textbfStructural textbfEntities 抽出法と textbfIncorporation (SEI) を考案した。
我々は、レポートにおけるプレゼンテーションスタイルの語彙を排除するために、構造エンティティ抽出(SEE)アプローチを採用する。
我々は,X線画像,類似の歴史的症例,患者固有の指標からの情報を統合するクロスモーダル融合ネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-23T01:29:47Z) - Self-supervised vision-langage alignment of deep learning representations for bone X-rays analysis [53.809054774037214]
本稿では, 骨X線とフレンチレポートを組み合わせることで, 視覚言語による事前訓練を活用することを提案する。
骨X線表現にまつわる埋め込み空間を形成するために、フランスの報告を統合する最初の研究である。
論文 参考訳(メタデータ) (2024-05-14T19:53:20Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Generation of Radiology Findings in Chest X-Ray by Leveraging
Collaborative Knowledge [6.792487817626456]
医学的イメージを解釈する認知的タスクは、放射線学のワークフローにおいて最も重要であり、しばしば時間を要するステップである。
この研究は、ほとんどの時間をFindingsの執筆またはナレーションに費やしている放射線学者の作業量を削減することに焦点を当てている。
単段階画像キャプションタスクとして放射線学レポートを生成する過去の研究とは異なり、CXR画像の解釈の複雑さを考慮に入れている。
論文 参考訳(メタデータ) (2023-06-18T00:51:28Z) - Improving Radiology Summarization with Radiograph and Anatomy Prompts [60.30659124918211]
本稿では,印象生成を促進するために,新しい解剖学的拡張型マルチモーダルモデルを提案する。
より詳しくは、まず、解剖学を抽出する一連のルールを構築し、各文にこれらのプロンプトを配置し、解剖学的特徴を強調する。
コントラスト学習モジュールを用いて、これらの2つの表現を全体レベルで整列させ、コアテンションを用いて文レベルで融合させる。
論文 参考訳(メタデータ) (2022-10-15T14:05:03Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - Event-based clinical findings extraction from radiology reports with
pre-trained language model [0.22940141855172028]
今回,臨床所見を付加した新しい放射線診断報告のコーパスを報告する。
金の標準コーパスには合計500点の注記CTレポートが含まれていた。
BERTを含む2つの最先端ディープラーニングアーキテクチャを用いて、トリガと引数のエンティティを抽出した。
論文 参考訳(メタデータ) (2021-12-27T05:03:10Z) - Learning Semi-Structured Representations of Radiology Reports [10.134080761449093]
放射線学レポートのコーパスを考えると、研究者は特定の医学的発見を説明するレポートのサブセットを見つけることにしばしば興味を持っている。
最近の研究では、ラジオロジーレポートにおける自由文文を、限られた語彙から取られた半構造化語列にマッピングする提案がなされている。
本稿では,放射線学報告の半構造化表現の自動生成手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T18:53:41Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
放射線技師の動作パターンを模倣する補助信号誘導知識デコーダ(ASGK)を提案する。
ASGKは、内的特徴融合と外部医療言語情報を統合して、医療知識の伝達と学習をガイドする。
論文 参考訳(メタデータ) (2020-06-06T01:00:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。