論文の概要: Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation
- arxiv url: http://arxiv.org/abs/2405.14905v1
- Date: Thu, 23 May 2024 01:29:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 19:48:22.518776
- Title: Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation
- Title(参考訳): 胸部X線レポート生成のための構造物質抽出と患者表示
- Authors: Kang Liu, Zhuoqi Ma, Xiaolu Kang, Zhusi Zhong, Zhicheng Jiao, Grayson Baird, Harrison Bai, Qiguang Miao,
- Abstract要約: 胸部X線レポート生成のための新しい方法である textbfStructural textbfEntities 抽出法と textbfIncorporation (SEI) を考案した。
我々は、レポートにおけるプレゼンテーションスタイルの語彙を排除するために、構造エンティティ抽出(SEE)アプローチを採用する。
我々は,X線画像,類似の歴史的症例,患者固有の指標からの情報を統合するクロスモーダル融合ネットワークを提案する。
- 参考スコア(独自算出の注目度): 10.46031380503486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The automated generation of imaging reports proves invaluable in alleviating the workload of radiologists. A clinically applicable reports generation algorithm should demonstrate its effectiveness in producing reports that accurately describe radiology findings and attend to patient-specific indications. In this paper, we introduce a novel method, \textbf{S}tructural \textbf{E}ntities extraction and patient indications \textbf{I}ncorporation (SEI) for chest X-ray report generation. Specifically, we employ a structural entities extraction (SEE) approach to eliminate presentation-style vocabulary in reports and improve the quality of factual entity sequences. This reduces the noise in the following cross-modal alignment module by aligning X-ray images with factual entity sequences in reports, thereby enhancing the precision of cross-modal alignment and further aiding the model in gradient-free retrieval of similar historical cases. Subsequently, we propose a cross-modal fusion network to integrate information from X-ray images, similar historical cases, and patient-specific indications. This process allows the text decoder to attend to discriminative features of X-ray images, assimilate historical diagnostic information from similar cases, and understand the examination intention of patients. This, in turn, assists in triggering the text decoder to produce high-quality reports. Experiments conducted on MIMIC-CXR validate the superiority of SEI over state-of-the-art approaches on both natural language generation and clinical efficacy metrics.
- Abstract(参考訳): 画像の自動生成は、放射線技師の作業負荷を軽減するのに有益である。
臨床応用報告生成アルゴリズムは, 放射線学的所見を正確に記述し, 患者固有の徴候に適応する報告を作成する上で, その効果を実証すべきである。
本稿では,胸部X線レポート生成のための新しい方法である「textbf{S}tructural \textbf{E}ntities extract」と「textbf{I}ncorporation (SEI)」を提案する。
具体的には、構造化エンティティ抽出(SEE)アプローチを用いて、レポートにおけるプレゼンテーションスタイルの語彙を排除し、事実エンティティシーケンスの品質を向上させる。
これにより、レポート中のX線画像と実効的な実体列を整列することにより、次のクロスモーダルアライメントモジュールのノイズを低減することができ、これにより、クロスモーダルアライメントの精度が向上し、同様の歴史的ケースの勾配のない検索においてモデルを支援することができる。
その後,X線画像,類似の歴史的症例,患者固有の徴候からの情報を統合するクロスモーダル融合ネットワークを提案する。
このプロセスにより、テキストデコーダは、X線画像の識別的特徴に出席し、類似した症例からの過去の診断情報を同化し、患者の検査意図を理解することができる。
これはテキストデコーダを起動して高品質なレポートを生成するのに役立ちます。
MIMIC-CXRで行った実験は、自然言語の生成と臨床効果の指標に関する最先端アプローチよりもSEIの方が優れていることを実証した。
関連論文リスト
- FG-CXR: A Radiologist-Aligned Gaze Dataset for Enhancing Interpretability in Chest X-Ray Report Generation [9.374812942790953]
我々は, 放射線学者が生成したキャプションと, 各解剖学の視線注意熱マップとの間に, 微粒なペアリング情報を提供するFine-Grained CXRデータセットを提案する。
解析の結果, ブラックボックス画像キャプション法を用いてレポートを生成するだけでは, CXRのどの情報を利用するのかを適切に説明できないことがわかった。
本稿では, 放射線科医の視線と転写の両面を密接に一致させるため, 放射線科医の診断過程を模倣する新しい注意生成ネットワーク(Gen-XAI)を提案する。
論文 参考訳(メタデータ) (2024-11-23T02:22:40Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - FlexR: Few-shot Classification with Language Embeddings for Structured
Reporting of Chest X-rays [37.15474283789249]
構造化された報告テンプレートにおける文によって定義される臨床所見を予測する手法を提案する。
この手法は、胸部X線と関連する自由テキストラジオグラフィーレポートを用いて、対照的な言語画像モデルを訓練することを含む。
その結果, 訓練用画像レベルのアノテーションが限られている場合でも, 胸部X線における重症度評価の構造化された報告タスクを達成できることが示唆された。
論文 参考訳(メタデータ) (2022-03-29T16:31:39Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
医療画像のレポート生成は、作業負荷を減らし、臨床実習における診断を支援することを約束する。
近年の研究では、ディープラーニングモデルが自然画像のキャプションに成功していることが示された。
本稿では,自動レポート生成のための変分トピック推論を提案する。
論文 参考訳(メタデータ) (2021-07-15T13:34:38Z) - Chest X-ray Report Generation through Fine-Grained Label Learning [46.352966049776875]
画像から詳細な所見を学習する領域認識自動胸部X線診断レポート生成アルゴリズムを提案する。
また、画像にそのような記述子を割り当てる自動ラベリングアルゴリズムを開発し、発見の粗い記述ときめ細かい記述の両方を認識する新しいディープラーニングネットワークを構築した。
論文 参考訳(メタデータ) (2020-07-27T19:50:56Z) - Show, Describe and Conclude: On Exploiting the Structure Information of
Chest X-Ray Reports [5.6070625920019825]
胸部X線像(CXR)は臨床検診や診断に一般的に用いられる。
レポートのセクションと内部の複雑な構造は、自動レポート生成に大きな課題をもたらします。
本稿では,CXRイメージングレポートを生成するために,レポートセクション間の構造情報を利用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-26T02:29:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。