One Chatbot Per Person: Creating Personalized Chatbots based on Implicit
User Profiles
- URL: http://arxiv.org/abs/2108.09355v1
- Date: Fri, 20 Aug 2021 20:33:12 GMT
- Title: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit
User Profiles
- Authors: Zhengyi Ma, Zhicheng Dou, Yutao Zhu, Hanxun Zhong, Ji-Rong Wen
- Abstract summary: Existing personalized approaches tried to incorporate several text descriptions as explicit user profiles.
We train a personalized language model to construct a general user profile from the user's historical responses.
We design a personalized decoder to fuse two decoding strategies, including generating a word from the generic vocabulary and copying one word from the user's personalized vocabulary.
- Score: 31.432585994256375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized chatbots focus on endowing chatbots with a consistent
personality to behave like real users, give more informative responses, and
further act as personal assistants. Existing personalized approaches tried to
incorporate several text descriptions as explicit user profiles. However, the
acquisition of such explicit profiles is expensive and time-consuming, thus
being impractical for large-scale real-world applications. Moreover, the
restricted predefined profile neglects the language behavior of a real user and
cannot be automatically updated together with the change of user interests. In
this paper, we propose to learn implicit user profiles automatically from
large-scale user dialogue history for building personalized chatbots.
Specifically, leveraging the benefits of Transformer on language understanding,
we train a personalized language model to construct a general user profile from
the user's historical responses. To highlight the relevant historical responses
to the input post, we further establish a key-value memory network of
historical post-response pairs, and build a dynamic post-aware user profile.
The dynamic profile mainly describes what and how the user has responded to
similar posts in history. To explicitly utilize users' frequently used words,
we design a personalized decoder to fuse two decoding strategies, including
generating a word from the generic vocabulary and copying one word from the
user's personalized vocabulary. Experiments on two real-world datasets show the
significant improvement of our model compared with existing methods.
Related papers
- First-Person Fairness in Chatbots [13.787745105316043]
We study "first-person fairness," which means fairness toward the user.
This includes providing high-quality responses to all users regardless of their identity or background.
We propose a scalable, privacy-preserving method for evaluating one aspect of first-person fairness.
arXiv Detail & Related papers (2024-10-16T17:59:47Z) - Prompt-based Personality Profiling: Reinforcement Learning for Relevance Filtering [8.20929362102942]
Author profiling is the task of inferring characteristics about individuals by analyzing content they share.
We propose a new method for author profiling which aims at distinguishing relevant from irrelevant content first, followed by the actual user profiling only with relevant data.
We evaluate our method for Big Five personality trait prediction on two Twitter corpora.
arXiv Detail & Related papers (2024-09-06T08:43:10Z) - Personalized Language Modeling from Personalized Human Feedback [49.344833339240566]
Reinforcement Learning from Human Feedback (RLHF) is commonly used to fine-tune large language models to better align with human preferences.
In this work, we aim to address this problem by developing methods for building personalized language models.
arXiv Detail & Related papers (2024-02-06T04:18:58Z) - MCP: Self-supervised Pre-training for Personalized Chatbots with
Multi-level Contrastive Sampling [18.40883902610959]
We propose a self-supervised learning framework for capturing better representations from users' dialogue history for personalized chatbots.
Specifically, we apply contrastive sampling methods to leverage the supervised signals hidden in user dialog history.
Experimental results on two real-world datasets show a significant improvement in our proposed model MCP compared with the existing methods.
arXiv Detail & Related papers (2022-10-17T05:16:23Z) - Less is More: Learning to Refine Dialogue History for Personalized
Dialogue Generation [57.73547958927826]
We propose to refine the user dialogue history on a large scale, based on which we can handle more dialogue history and obtain more accurate persona information.
Specifically, we design an MSP model which consists of three personal information refiners and a personalized response generator.
arXiv Detail & Related papers (2022-04-18T02:02:56Z) - X2T: Training an X-to-Text Typing Interface with Online Learning from
User Feedback [83.95599156217945]
We focus on assistive typing applications in which a user cannot operate a keyboard, but can supply other inputs.
Standard methods train a model on a fixed dataset of user inputs, then deploy a static interface that does not learn from its mistakes.
We investigate a simple idea that would enable such interfaces to improve over time, with minimal additional effort from the user.
arXiv Detail & Related papers (2022-03-04T00:07:20Z) - Learning Implicit User Profiles for Personalized Retrieval-Based Chatbot [29.053654530024083]
IMPChat aims to learn an implicit user profile through modeling user's personalized language style and personalized preferences separately.
To learn a user's personalized language style, we elaborately build language models from shallow to deep using the user's historical responses.
We match each response candidate with the personalized language style and personalized preference, respectively, and fuse the two matching signals to determine the final ranking score.
arXiv Detail & Related papers (2021-08-18T02:07:28Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - Pchatbot: A Large-Scale Dataset for Personalized Chatbot [49.16746174238548]
We introduce Pchatbot, a large-scale dialogue dataset that contains two subsets collected from Weibo and Judicial forums respectively.
To adapt the raw dataset to dialogue systems, we elaborately normalize the raw dataset via processes such as anonymization.
The scale of Pchatbot is significantly larger than existing Chinese datasets, which might benefit the data-driven models.
arXiv Detail & Related papers (2020-09-28T12:49:07Z) - A Neural Topical Expansion Framework for Unstructured Persona-oriented
Dialogue Generation [52.743311026230714]
Persona Exploration and Exploitation (PEE) is able to extend the predefined user persona description with semantically correlated content.
PEE consists of two main modules: persona exploration and persona exploitation.
Our approach outperforms state-of-the-art baselines in terms of both automatic and human evaluations.
arXiv Detail & Related papers (2020-02-06T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.