論文の概要: A Systematic Review of Automated Query Reformulations in Source Code
Search
- arxiv url: http://arxiv.org/abs/2108.09646v2
- Date: Thu, 8 Jun 2023 22:10:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-12 18:51:38.620236
- Title: A Systematic Review of Automated Query Reformulations in Source Code
Search
- Title(参考訳): ソースコード検索における自動クエリ変換の体系的レビュー
- Authors: Mohammad Masudur Rahman and Chanchal K. Roy
- Abstract要約: 我々は,2,970の候補研究から,問合せの改定に関する70の研究を選定した。
本稿では,検索クエリの改定における研究状況を改善するためのベストプラクティスと今後の機会について論じる。
- 参考スコア(独自算出の注目度): 12.234169944475537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fixing software bugs and adding new features are two of the major maintenance
tasks. Software bugs and features are reported as change requests. Developers
consult these requests and often choose a few keywords from them as an ad hoc
query. Then they execute the query with a search engine to find the exact
locations within software code that need to be changed. Unfortunately, even
experienced developers often fail to choose appropriate queries, which leads to
costly trials and errors during a code search. Over the years, many studies
attempt to reformulate the ad hoc queries from developers to support them. In
this systematic literature review, we carefully select 70 primary studies on
query reformulations from 2,970 candidate studies, perform an in-depth
qualitative analysis (e.g., Grounded Theory), and then answer seven research
questions with major findings. First, to date, eight major methodologies (e.g.,
term weighting, term co-occurrence analysis, thesaurus lookup) have been
adopted to reformulate queries. Second, the existing studies suffer from
several major limitations (e.g., lack of generalizability, vocabulary mismatch
problem, subjective bias) that might prevent their wide adoption. Finally, we
discuss the best practices and future opportunities to advance the state of
research in search query reformulations.
- Abstract(参考訳): ソフトウェアバグの修正と新機能の追加は、主要なメンテナンスタスクの2つです。
ソフトウェアバグと機能は変更要求として報告される。
開発者はこれらの要求を参考にし、しばしばアドホックなクエリとしていくつかのキーワードを選択します。
その後、検索エンジンでクエリを実行して、変更が必要なソフトウェアコード内の正確な位置を見つける。
残念なことに、経験豊富な開発者でさえ適切なクエリの選択に失敗し、コード検索中にコストのかかる試行とエラーが発生する。
長年にわたり、多くの研究が開発者からのアドホッククエリを再構築してサポートしようと試みてきた。
本体系的文献レビューでは,2,970の候補研究から70の問合せ修正研究を注意深く選択し,詳細な質的分析(例えば,基底的理論)を行い,7つの研究課題に主要な知見を加えて回答する。
まず、現在までに8つの主要な方法論(項重み付け、項共起分析、シソーラスルックアップ)がクエリの再構成に採用されている。
第二に、既存の研究はいくつかの大きな制限(一般化可能性の欠如、語彙ミスマッチ問題、主観バイアスなど)に直面している。
最後に,検索問合せ改革における研究の現状を進めるためのベストプラクティスと今後の機会について考察する。
関連論文リスト
- Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
マルチモーダル大規模言語モデル(MLLM)に固有の「ハロシン化」問題を緩和する上で,mRAG(Multimodal Retrieval Augmented Generation)が重要な役割を果たしている。
マルチモーダル検索のための自己適応型計画エージェントOmniSearchを提案する。
論文 参考訳(メタデータ) (2024-11-05T09:27:21Z) - CLARINET: Augmenting Language Models to Ask Clarification Questions for Retrieval [52.134133938779776]
CLARINETは,回答が正しい候補の確実性を最大化する質問を選択することで,情報的明確化を問うシステムである。
提案手法は,大規模言語モデル(LLM)を検索分布の条件付きで拡張し,各ターンで真の候補のランクを最大化する問題を生成する。
論文 参考訳(メタデータ) (2024-04-28T18:21:31Z) - Typo-Robust Representation Learning for Dense Retrieval [6.148710657178892]
現実世界の設定における密集検索の主な課題の1つは、ミススペルされた単語を含むクエリの処理である。
ミススペルクエリを扱う一般的なアプローチは、ミススペルクエリとそれらのプリスタントクエリとの差の最小化である。
ミススペルクエリとプリスタンクエリのアライメントのみに焦点を当てた既存のアプローチとは異なり,本手法は各ミススペルクエリと周辺クエリとのコントラストも改善する。
論文 参考訳(メタデータ) (2023-06-17T13:48:30Z) - ConvGQR: Generative Query Reformulation for Conversational Search [37.54018632257896]
ConvGQRは、生成事前訓練された言語モデルに基づいて会話クエリを再構成する新しいフレームワークである。
本稿では,クエリ再構成と検索の両方を最適化する知識注入機構を提案する。
論文 参考訳(メタデータ) (2023-05-25T01:45:06Z) - Keyword Embeddings for Query Suggestion [3.7900158137749322]
本稿では,科学文献に基づいて学習したキーワード提案タスクのための2つの新しいモデルを提案する。
我々の手法はWord2VecとFastTextのアーキテクチャに適応し、文書のキーワード共起を利用してキーワード埋め込みを生成する。
我々は,タスクのベースラインよりも大幅に改善された,最先端の単語と文の埋め込みモデルに対する提案を評価した。
論文 参考訳(メタデータ) (2023-01-19T11:13:04Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
本稿では,検索システムの2つのクラスにおいて,クエリとドキュメントの役割を逆転させることにより,検索タスクとしてのEQIの実現可能性について検討する。
本研究では,クエリのランク付けの質を評価するための評価基準を導出するとともに,近似EQIの様々な実践的側面に着目した経験的分析を行う。
論文 参考訳(メタデータ) (2021-10-14T20:19:27Z) - Diversity driven Query Rewriting in Search Advertising [1.5289756643078838]
生成的検索モデルは、このようなクエリの書き直しを生成するタスクにおいて有効であることが示されている。
高品質かつ多様な書き直しを生成するフレームワークであるCLOVERを紹介します。
提案手法の有効性を,3つの主要言語にまたがる検索クエリのオフライン実験により実証的に示す。
論文 参考訳(メタデータ) (2021-06-07T17:30:45Z) - Automated Query Reformulation for Efficient Search based on Query Logs
From Stack Overflow [0.0]
本稿では,ディープラーニングに基づくソフトウェア固有のクエリ再構成手法を提案する。
我々は,クエリとそれに対応するクエリを含む大規模クエリ再構成コーパスを構築した。
提案手法では,ユーザが元のクエリを入力した場合に,候補変更クエリを自動的に生成するトランスフォーマーモデルを訓練する。
論文 参考訳(メタデータ) (2021-02-01T13:31:50Z) - On the Social and Technical Challenges of Web Search Autosuggestion
Moderation [118.47867428272878]
自動提案は通常、検索ログと文書表現のコーパスに基づいてトレーニングされた機械学習(ML)システムによって生成される。
現在の検索エンジンは、このような問題のある提案を抑えるのに、ますます熟練している。
問題のある提案のいくつかの側面、パイプラインに沿った困難な問題、そしてWeb検索を超えたアプリケーションの増加になぜ私たちの議論が適用されるのかについて論じる。
論文 参考訳(メタデータ) (2020-07-09T19:22:00Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
本稿では,双方向トランスフォーマに基づくニューラルクエリ解決モデルQuReTeCを提案する。
我々はQuReTeCが最先端モデルより優れており、また、QuReTeCのトレーニングに必要な人為的なデータ量を大幅に削減するために、我々の遠隔監視手法が有効であることを示す。
論文 参考訳(メタデータ) (2020-05-24T11:37:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。