論文の概要: Query Resolution for Conversational Search with Limited Supervision
- arxiv url: http://arxiv.org/abs/2005.11723v1
- Date: Sun, 24 May 2020 11:37:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 13:50:45.221897
- Title: Query Resolution for Conversational Search with Limited Supervision
- Title(参考訳): 制限付き対話型検索のための問合せ解決法
- Authors: Nikos Voskarides, Dan Li, Pengjie Ren, Evangelos Kanoulas, Maarten de
Rijke
- Abstract要約: 本稿では,双方向トランスフォーマに基づくニューラルクエリ解決モデルQuReTeCを提案する。
我々はQuReTeCが最先端モデルより優れており、また、QuReTeCのトレーニングに必要な人為的なデータ量を大幅に削減するために、我々の遠隔監視手法が有効であることを示す。
- 参考スコア(独自算出の注目度): 63.131221660019776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we focus on multi-turn passage retrieval as a crucial component
of conversational search. One of the key challenges in multi-turn passage
retrieval comes from the fact that the current turn query is often
underspecified due to zero anaphora, topic change, or topic return. Context
from the conversational history can be used to arrive at a better expression of
the current turn query, defined as the task of query resolution. In this paper,
we model the query resolution task as a binary term classification problem: for
each term appearing in the previous turns of the conversation decide whether to
add it to the current turn query or not. We propose QuReTeC (Query Resolution
by Term Classification), a neural query resolution model based on bidirectional
transformers. We propose a distant supervision method to automatically generate
training data by using query-passage relevance labels. Such labels are often
readily available in a collection either as human annotations or inferred from
user interactions. We show that QuReTeC outperforms state-of-the-art models,
and furthermore, that our distant supervision method can be used to
substantially reduce the amount of human-curated data required to train
QuReTeC. We incorporate QuReTeC in a multi-turn, multi-stage passage retrieval
architecture and demonstrate its effectiveness on the TREC CAsT dataset.
- Abstract(参考訳): 本研究は,対話的検索の重要な要素として,マルチターン・パッセージ検索に焦点をあてる。
マルチターンパス検索における重要な課題の1つは、現在のターンクエリが、0のアナフォラ、トピック変更、トピックリターンのため、しばしば不特定であるという事実である。
会話履歴からのコンテキストは、クエリ解決のタスクとして定義された現在のターンクエリのより良い表現に到達するために使用できる。
本稿では,クエリ解決タスクをバイナリ項分類問題としてモデル化する。 会話の前のターンに現れる各ワードに対して,現在のターンクエリに追加するかどうかを判断する。
本稿では,双方向トランスフォーマーに基づくニューラルネットワークのクエリ解決モデルであるquretec (query resolution by term classification)を提案する。
本稿では,クエリーパス関連ラベルを用いて学習データを自動的に生成する遠隔監視手法を提案する。
このようなラベルは、ヒューマンアノテーションまたはユーザーインタラクションから推測されたコレクションで容易に利用できる。
我々はQuReTeCが最先端モデルより優れており、また、QuReTeCのトレーニングに必要な人為的なデータ量を大幅に削減するために、我々の遠隔監視手法が有効であることを示す。
我々は、QuReTeCをマルチターン多段通過検索アーキテクチャに組み込み、TREC CAsTデータセット上での有効性を示す。
関連論文リスト
- Aligning Query Representation with Rewritten Query and Relevance Judgments in Conversational Search [32.35446999027349]
我々は、より優れたクエリ表現モデルをトレーニングするために、リライトされたクエリと会話検索データの関連判断の両方を活用する。
提案したモデル --Query Representation Alignment Conversational Retriever(QRACDR)は、8つのデータセットでテストされる。
論文 参考訳(メタデータ) (2024-07-29T17:14:36Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
本稿では,検索ログの強化とモデリングの強化を目的としたクエリ指向データ拡張を提案する。
検索コンテキストの最も重要な部分を変更することで補足的なトレーニングペアを生成する。
我々は、現在のクエリを変更するためのいくつかの戦略を開発し、その結果、様々な難易度で新しいトレーニングデータを得る。
論文 参考訳(メタデータ) (2024-07-04T08:08:33Z) - A Surprisingly Simple yet Effective Multi-Query Rewriting Method for Conversational Passage Retrieval [14.389703823471574]
本稿では,複数のクエリを生成するためのニューラルクエリリライターを提案する。
ビーム検索アルゴリズムの動作方法を活用し、追加コストなしで複数のクエリリライトを生成できます。
論文 参考訳(メタデータ) (2024-06-27T07:43:03Z) - Toward Conversational Agents with Context and Time Sensitive Long-term Memory [8.085414868117917]
最近まで、RAGに関するほとんどの研究は、ウィキペディアのような巨大なテキストデータベースからの情報検索に重点を置いてきた。
我々は,静的なデータベース検索と比較して,長文の対話データからの効果的な検索は2つの問題に直面していると論じる。
我々は、最近の長文でシミュレートされた会話のデータセットの上に構築された、あいまいで時間に基づく質問の新しいデータセットを生成する。
論文 参考訳(メタデータ) (2024-05-29T18:19:46Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
本稿では,2つのタスクを同時に実行可能なRe rank-Truncation joint model(GenRT)を提案する。
GenRTは、エンコーダ-デコーダアーキテクチャに基づく生成パラダイムによるリランクとトランケーションを統合している。
提案手法は,Web検索および検索拡張LLMにおけるリランクタスクとトラルケーションタスクの両方においてSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-02-05T06:52:53Z) - Phrase Retrieval for Open-Domain Conversational Question Answering with
Conversational Dependency Modeling via Contrastive Learning [54.55643652781891]
Open-Domain Conversational Question Answering (ODConvQA)は、マルチターン会話を通じて質問に答えることを目的としている。
そこで本研究では,単語列に対する句検索方式を用いて,回答を直接予測する手法を提案する。
論文 参考訳(メタデータ) (2023-06-07T09:46:38Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQは、テキストと画像のクエリからコンテンツを統合することで、大規模なコーパスから知識を取得するシステムを必要とする。
本稿では,入力テキストや画像を直接処理し,関連する知識をエンドツーエンドで検索する検索モデルReViz'を提案する。
ゼロショット設定下での2つのデータセットの検索において,優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-01T08:04:12Z) - ConvGQR: Generative Query Reformulation for Conversational Search [37.54018632257896]
ConvGQRは、生成事前訓練された言語モデルに基づいて会話クエリを再構成する新しいフレームワークである。
本稿では,クエリ再構成と検索の両方を最適化する知識注入機構を提案する。
論文 参考訳(メタデータ) (2023-05-25T01:45:06Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z) - MLR: A Two-stage Conversational Query Rewriting Model with Multi-task
Learning [16.88648782206587]
本稿では,シーケンスラベリングとクエリリライトのマルチタスクモデルであるMLRを提案する。
MLRは、マルチターンの会話クエリを単一のターンクエリに再構成し、ユーザの真の意図を簡潔に伝達する。
モデルをトレーニングするために,新しい中国語クエリ書き換えデータセットを構築し,その上で実験を行う。
論文 参考訳(メタデータ) (2020-04-13T08:04:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。