論文の概要: SIDE: Center-based Stereo 3D Detector with Structure-aware Instance
Depth Estimation
- arxiv url: http://arxiv.org/abs/2108.09663v1
- Date: Sun, 22 Aug 2021 08:09:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-25 04:06:18.918342
- Title: SIDE: Center-based Stereo 3D Detector with Structure-aware Instance
Depth Estimation
- Title(参考訳): 側面:構造対応インスタンス深度推定を用いたセンタベースステレオ3d検出器
- Authors: Xidong Peng, Xinge Zhu, Tai Wang, and Yuexin Ma
- Abstract要約: 構造認識型立体3D検出器(SIDE)と呼ばれる立体像に基づくアンカーフリー3D検出法を提案する。
各オブジェクトのRoIからコストボリュームを構築することで,インスタンスレベルの深度情報を探索する。
本手法は, 深度マップ管理のない既存手法と比較して, 最先端の性能を実現する。
- 参考スコア(独自算出の注目度): 11.169586369931803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D detection plays an indispensable role in environment perception. Due to
the high cost of commonly used LiDAR sensor, stereo vision based 3D detection,
as an economical yet effective setting, attracts more attention recently. For
these approaches based on 2D images, accurate depth information is the key to
achieve 3D detection, and most existing methods resort to a preliminary stage
for depth estimation. They mainly focus on the global depth and neglect the
property of depth information in this specific task, namely, sparsity and
locality, where exactly accurate depth is only needed for these 3D bounding
boxes. Motivated by this finding, we propose a stereo-image based anchor-free
3D detection method, called structure-aware stereo 3D detector (termed as
SIDE), where we explore the instance-level depth information via constructing
the cost volume from RoIs of each object. Due to the information sparsity of
local cost volume, we further introduce match reweighting and structure-aware
attention, to make the depth information more concentrated. Experiments
conducted on the KITTI dataset show that our method achieves the
state-of-the-art performance compared to existing methods without depth map
supervision.
- Abstract(参考訳): 3D検出は環境認識において不可欠である。
一般的に使用されるLiDARセンサーのコストが高いため、ステレオビジョンに基づく3D検出は経済的に効果的だが、近年は注目を集めている。
2次元画像に基づくこれらのアプローチでは、正確な深度情報が3次元検出の鍵となり、既存の手法のほとんどは、深度推定の予備段階に頼っている。
それらは主にグローバルな深度に焦点を合わせ、この特定のタスク、すなわち空間と局所性における深度情報の性質を無視する。
そこで本研究では, ステレオ画像を用いた立体画像によるアンカーフリー3D検出手法を提案し, 各オブジェクトのRoIsからコストボリュームを構成することで, インスタンスレベルの深度情報を探索する。
局所的なコスト量の情報のスパース性から,さらに,マッチングの重み付けと構造認識の注意を導入し,奥行き情報の集中化を図る。
KITTIデータセットで行った実験から,本手法は深度マップの監督のない既存手法と比較して最先端の性能を実現することが示された。
関連論文リスト
- OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection [102.0744303467713]
OPENと呼ばれる新しい多視点3Dオブジェクト検出器を提案する。
我々の主目的は、提案したオブジェクト指向位置埋め込みを通して、オブジェクトワイド情報をネットワークに効果的に注入することである。
OPENは、nuScenesテストベンチマークで64.4%のNDSと56.7%のmAPで、最先端の新たなパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-07-15T14:29:15Z) - MonoPGC: Monocular 3D Object Detection with Pixel Geometry Contexts [6.639648061168067]
我々は、リッチなPixel Geometry Contextsを備えた新しいエンドツーエンドのモノクロ3Dオブジェクト検出フレームワークであるMonoPGCを提案する。
我々は,局所的および大域的な深度幾何学的知識を視覚的特徴に注入するために,画素深度推定を補助タスクとして導入し,設計深度クロスアテンションピラミッドモジュール(DCPM)を設計する。
さらに,3次元空間位置と奥行き認識機能を効率よく統合するDSATを提案する。
論文 参考訳(メタデータ) (2023-02-21T09:21:58Z) - Attention-Based Depth Distillation with 3D-Aware Positional Encoding for
Monocular 3D Object Detection [10.84784828447741]
ADDは、3D対応の位置符号化を備えた注意に基づく深度知識蒸留フレームワークである。
教師の設計によると、私たちのフレームワークはシームレスで、ドメインギャップフリーで、実装が容易で、オブジェクト指向の地層深度と互換性があります。
我々は,3つの代表的な単分子検出器上でのフレームワークを実装し,予測計算コストの増大を伴わず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-11-30T06:39:25Z) - Boosting Monocular 3D Object Detection with Object-Centric Auxiliary
Depth Supervision [13.593246617391266]
本稿では,RGB画像に基づく3D検出器を,深度推定タスクに類似した深度予測損失で共同でトレーニングすることにより,RGB画像に基づく3D検出器の強化手法を提案する。
新たな物体中心深度予測損失は,3次元物体検出において重要な前景物体周辺の深度に焦点をあてる。
我々の深度回帰モデルは、物体の3次元信頼度を表すために、深度の不確かさを予測するためにさらに訓練される。
論文 参考訳(メタデータ) (2022-10-29T11:32:28Z) - MonoDETR: Depth-guided Transformer for Monocular 3D Object Detection [61.89277940084792]
深度誘導型TRansformer(MonoDETR)を用いたモノクロ検出のための最初のDETRフレームワークについて紹介する。
我々は3Dオブジェクト候補を学習可能なクエリとして定式化し、オブジェクトとシーンの深度相互作用を行うための深度誘導デコーダを提案する。
モノクルイメージを入力としてKITTIベンチマークでは、MonoDETRは最先端のパフォーマンスを実現し、追加の深度アノテーションを必要としない。
論文 参考訳(メタデータ) (2022-03-24T19:28:54Z) - Self-Supervised Depth Completion for Active Stereo [55.79929735390945]
アクティブステレオシステムは、低コストで高品質な深度マップのため、ロボット産業で広く利用されている。
これらの深度センサーはステレオアーチファクトに悩まされており、密度の深い深度推定を提供していない。
本稿では, 高精度な深度マップを推定するアクティブステレオシステムのための, 自己監督型深度補完法を提案する。
論文 参考訳(メタデータ) (2021-10-07T07:33:52Z) - Shape Prior Non-Uniform Sampling Guided Real-time Stereo 3D Object
Detection [59.765645791588454]
最近導入されたRTS3Dは、深度監督のないオブジェクトの中間表現のための効率的な4次元特徴整合埋め込み空間を構築している。
本研究では, 内部領域で高密度サンプリングを行い, 内部領域でスパースサンプリングを行う非一様サンプリング方式を提案する。
提案手法は,ネットワークパラメータをほとんど含まないAP3dに対して2.57%の改善を実現している。
論文 参考訳(メタデータ) (2021-06-18T09:14:55Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
特徴アライメントと非対称非局所的注意を有するモノクロ3次元単段物体検出器(M3DSSD)を提案する。
提案したM3DSSDは,KITTIデータセット上のモノラルな3Dオブジェクト検出手法よりも大幅に性能が向上する。
論文 参考訳(メタデータ) (2021-03-24T13:09:11Z) - Confidence Guided Stereo 3D Object Detection with Split Depth Estimation [10.64859537162938]
CG-Stereoは信頼性誘導型ステレオ3Dオブジェクト検出パイプラインである。
深度推定の際には、前景と背景の画素に別個のデコーダを使用する。
提案手法は, KITTIベンチマークにおいて, 最先端のステレオベース3D検出器よりも優れている。
論文 参考訳(メタデータ) (2020-03-11T20:00:11Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
画像ベースとLiDARベースの3Dオブジェクト検出器の間には大きなパフォーマンスギャップがある。
我々の手法であるDeep Stereo Geometry Network (DSGN)は,このギャップを著しく低減する。
初めて、シンプルで効果的な1段ステレオベースの3D検出パイプラインを提供する。
論文 参考訳(メタデータ) (2020-01-10T11:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。