The average search probabilities of discrete-time quantum walks
- URL: http://arxiv.org/abs/2108.09818v1
- Date: Sun, 22 Aug 2021 18:53:22 GMT
- Title: The average search probabilities of discrete-time quantum walks
- Authors: Hanmeng Zhan
- Abstract summary: We first show that, for a regular graph, the spectrum of the transition matrix is determined by the weighted adjacency matrix of an augmented graph.
We then consider the average search probability on a distance regular graph, and find a formula in terms of the adjacency matrix of its subgraph.
In particular, for any family of (1) complete graphs, or (2) strongly regular graphs, or (3) distance regular graphs of a fixed parameter $d$, varying valency $k$ and varying size $n$, the average search probability approaches $1/4$ as the valency goes to infinity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the average probability that a discrete-time quantum walk finds a
marked vertex on a graph. We first show that, for a regular graph, the spectrum
of the transition matrix is determined by the weighted adjacency matrix of an
augmented graph. We then consider the average search probability on a distance
regular graph, and find a formula in terms of the adjacency matrix of its
vertex-deleted subgraph. In particular, for any family of (1) complete graphs,
or (2) strongly regular graphs, or (3) distance regular graphs of a fixed
parameter $d$, varying valency $k$ and varying size $n$, such that $k^{d-1}/n$
vanishes as $k$ increases, the average search probability approaches $1/4$ as
the valency goes to infinity. We also present a more relaxed criterion, in
terms of the intersection array, for this limit to be approached by distance
regular graphs.
Related papers
- Moments, Random Walks, and Limits for Spectrum Approximation [40.43008834125277]
We show that there are distributions on $[-1,1]$ that cannot be approximated to accuracy $epsilon$ in Wasserstein-1 distance.
No algorithm can compute an $epsilon$-accurate approximation to the spectrum of a normalized graph adjacency matrix with constant probability.
arXiv Detail & Related papers (2023-07-02T05:03:38Z) - Graph Fourier MMD for Signals on Graphs [67.68356461123219]
We propose a novel distance between distributions and signals on graphs.
GFMMD is defined via an optimal witness function that is both smooth on the graph and maximizes difference in expectation.
We showcase it on graph benchmark datasets as well as on single cell RNA-sequencing data analysis.
arXiv Detail & Related papers (2023-06-05T00:01:17Z) - Improved High-Probability Regret for Adversarial Bandits with
Time-Varying Feedback Graphs [62.52390282012508]
We study high-probability regret bounds for adversarial $K$-armed bandits with time-varying feedback graphs over $T$ rounds.
We develop an algorithm that achieves the optimal regret $widetildemathcalO((sum_t=1Talpha_t)1/2+max_tin[T]alpha_t]$ with high probability.
We also develop the first algorithm that achieves the optimal high-probability regret bound for weakly observable graphs.
arXiv Detail & Related papers (2022-10-04T04:36:15Z) - Multimarked Spatial Search by Continuous-Time Quantum Walk [0.0]
We describe a framework for determining the computational complexity of spatial search by continuous-time quantum walk on arbitrary graphs.
The quantum walk is driven by a Hamiltonian derived from the adjacency matrix of the graph modified by the presence of the marked vertices.
arXiv Detail & Related papers (2022-03-27T20:22:17Z) - A framework for optimal quantum spatial search using alternating
phase-walks [0.0]
We generalise the Childs & Goldstone ($mathcalCG$) algorithm via alternating applications of marked-vertex phase shifts and continuous-time quantum walks.
We demonstrate the effectiveness of the algorithm by applying it to obtain $mathcalO(sqrtN)$ search on a variety of graphs.
arXiv Detail & Related papers (2021-09-29T11:16:52Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Accelerated Gradient Tracking over Time-varying Graphs for Decentralized Optimization [59.65871549878937]
We prove that the practical single loop accelerated gradient tracking needs $O(fracgamma1-sigma_gamma)2sqrtfracLepsilon)$.
Our convergence rates improve significantly over the ones of $O(frac1epsilon5/7)$ and $O(fracLmu)5/7frac1 (1-sigma)1.5logfrac1epsilon)$.
arXiv Detail & Related papers (2021-04-06T15:34:14Z) - The Quantum Approximate Optimization Algorithm Needs to See the Whole
Graph: Worst Case Examples [6.810856082577402]
The Quantum Approximate Optimization Algorithm can be applied to search problems on graphs with a cost function that is a sum of terms corresponding to the edges.
We show that the QAOA with $(d-1)2p nA$ for any $A1$, can only achieve an approximation ratio of 1/2 for Max-Cut on bipartite random d-regular graphs for d large.
arXiv Detail & Related papers (2020-05-18T14:23:09Z) - Continuous-time quantum walks in the presence of a quadratic
perturbation [55.41644538483948]
We address the properties of continuous-time quantum walks with Hamiltonians of the form $mathcalH= L + lambda L2$.
We consider cycle, complete, and star graphs because paradigmatic models with low/high connectivity and/or symmetry.
arXiv Detail & Related papers (2020-05-13T14:53:36Z) - Search on Vertex-Transitive Graphs by Lackadaisical Quantum Walk [0.0]
The lackadaisical quantum walk is a discrete-time, coined quantum walk on a graph.
It can improve spatial search on the complete graph, discrete torus, cycle, and regular complete bipartite graph.
We present a number of numerical simulations supporting this hypothesis.
arXiv Detail & Related papers (2020-02-26T00:10:38Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.