Generative and Contrastive Self-Supervised Learning for Graph Anomaly
Detection
- URL: http://arxiv.org/abs/2108.09896v1
- Date: Mon, 23 Aug 2021 02:15:21 GMT
- Title: Generative and Contrastive Self-Supervised Learning for Graph Anomaly
Detection
- Authors: Yu Zheng, Ming Jin, Yixin Liu, Lianhua Chi, Khoa T. Phan, Yi-Ping
Phoebe Chen
- Abstract summary: We propose a novel method, Self-Supervised Learning for Graph Anomaly Detection (SL-GAD)
Our method constructs different contextual subgraphs based on a target node and employs two modules, generative attribute regression and multi-view contrastive learning for anomaly detection.
We conduct extensive experiments on six benchmark datasets and the results demonstrate that our method outperforms state-of-the-art methods by a large margin.
- Score: 14.631674952942207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection from graph data has drawn much attention due to its
practical significance in many critical applications including cybersecurity,
finance, and social networks. Existing data mining and machine learning methods
are either shallow methods that could not effectively capture the complex
interdependency of graph data or graph autoencoder methods that could not fully
exploit the contextual information as supervision signals for effective anomaly
detection. To overcome these challenges, in this paper, we propose a novel
method, Self-Supervised Learning for Graph Anomaly Detection (SL-GAD). Our
method constructs different contextual subgraphs (views) based on a target node
and employs two modules, generative attribute regression and multi-view
contrastive learning for anomaly detection. While the generative attribute
regression module allows us to capture the anomalies in the attribute space,
the multi-view contrastive learning module can exploit richer structure
information from multiple subgraphs, thus abling to capture the anomalies in
the structure space, mixing of structure, and attribute information. We conduct
extensive experiments on six benchmark datasets and the results demonstrate
that our method outperforms state-of-the-art methods by a large margin.
Related papers
- UMGAD: Unsupervised Multiplex Graph Anomaly Detection [40.17829938834783]
We propose a novel Unsupervised Multiplex Graph Anomaly Detection method, named UMGAD.
We first learn multi-relational correlations among nodes in multiplex heterogeneous graphs.
Then, to weaken the influence of noise and redundant information on abnormal information extraction, we generate attribute-level and subgraph-level augmented-view graphs.
arXiv Detail & Related papers (2024-11-19T15:15:45Z) - Imbalanced Graph-Level Anomaly Detection via Counterfactual Augmentation and Feature Learning [1.3756846638796]
We propose an imbalanced GLAD method via counterfactual augmentation and feature learning.
We apply the model to brain disease datasets, which can prove the capability of our work.
arXiv Detail & Related papers (2024-07-13T13:40:06Z) - Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly
Detection [15.757864894708364]
Graph anomaly detection plays a crucial role in identifying exceptional instances in graph data that deviate significantly from the majority.
We propose a novel few-shot Graph Anomaly Detection model called FMGAD.
We show that FMGAD can achieve better performance than other state-of-the-art methods, regardless of artificially injected anomalies or domain-organic anomalies.
arXiv Detail & Related papers (2023-11-17T07:49:20Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Hyperbolic Self-supervised Contrastive Learning Based Network Anomaly
Detection [0.0]
Anomaly detection on the attributed network has recently received increasing attention in many research fields.
We propose an efficient anomaly detection framework using hyperbolic self-supervised contrastive learning.
arXiv Detail & Related papers (2022-09-12T07:08:34Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.