Imbalanced Graph-Level Anomaly Detection via Counterfactual Augmentation and Feature Learning
- URL: http://arxiv.org/abs/2407.11082v1
- Date: Sat, 13 Jul 2024 13:40:06 GMT
- Title: Imbalanced Graph-Level Anomaly Detection via Counterfactual Augmentation and Feature Learning
- Authors: Zitong Wang, Xuexiong Luo, Enfeng Song, Qiuqing Bai, Fu Lin,
- Abstract summary: We propose an imbalanced GLAD method via counterfactual augmentation and feature learning.
We apply the model to brain disease datasets, which can prove the capability of our work.
- Score: 1.3756846638796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-level anomaly detection (GLAD) has already gained significant importance and has become a popular field of study, attracting considerable attention across numerous downstream works. The core focus of this domain is to capture and highlight the anomalous information within given graph datasets. In most existing studies, anomalies are often the instances of few. The stark imbalance misleads current GLAD methods to focus on learning the patterns of normal graphs more, further impacting anomaly detection performance. Moreover, existing methods predominantly utilize the inherent features of nodes to identify anomalous graph patterns which is approved suboptimal according to our experiments. In this work, we propose an imbalanced GLAD method via counterfactual augmentation and feature learning. Specifically, we first construct anomalous samples based on counterfactual learning, aiming to expand and balance the datasets. Additionally, we construct a module based on Graph Neural Networks (GNNs), which allows us to utilize degree attributes to complement the inherent attribute features of nodes. Then, we design an adaptive weight learning module to integrate features tailored to different datasets effectively to avoid indiscriminately treating all features as equivalent. Furthermore, extensive baseline experiments conducted on public datasets substantiate the robustness and effectiveness. Besides, we apply the model to brain disease datasets, which can prove the generalization capability of our work. The source code of our work is available online.
Related papers
- Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization [9.116601683256317]
In this work, we propose a novel framework, called Invariant Graph Learning based on Information bottleneck theory (InfoIGL)
Specifically, InfoIGL introduces a redundancy filter to compress task-irrelevant information related to environmental factors.
Experiments on both synthetic and real-world datasets demonstrate that our method achieves state-of-the-art performance under OOD generalization.
arXiv Detail & Related papers (2024-08-03T07:38:04Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly
Detection [15.757864894708364]
Graph anomaly detection plays a crucial role in identifying exceptional instances in graph data that deviate significantly from the majority.
We propose a novel few-shot Graph Anomaly Detection model called FMGAD.
We show that FMGAD can achieve better performance than other state-of-the-art methods, regardless of artificially injected anomalies or domain-organic anomalies.
arXiv Detail & Related papers (2023-11-17T07:49:20Z) - Normality Learning-based Graph Anomaly Detection via Multi-Scale
Contrastive Learning [61.57383634677747]
Graph anomaly detection (GAD) has attracted increasing attention in machine learning and data mining.
Here, we propose a normality learning-based GAD framework via multi-scale contrastive learning networks (NLGAD for abbreviation)
Notably, the proposed algorithm improves the detection performance (up to 5.89% AUC gain) compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-09-12T08:06:04Z) - DAGAD: Data Augmentation for Graph Anomaly Detection [57.92471847260541]
This paper devises a novel Data Augmentation-based Graph Anomaly Detection (DAGAD) framework for attributed graphs.
A series of experiments on three datasets prove that DAGAD outperforms ten state-of-the-art baseline detectors concerning various mostly-used metrics.
arXiv Detail & Related papers (2022-10-18T11:28:21Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Generative and Contrastive Self-Supervised Learning for Graph Anomaly
Detection [14.631674952942207]
We propose a novel method, Self-Supervised Learning for Graph Anomaly Detection (SL-GAD)
Our method constructs different contextual subgraphs based on a target node and employs two modules, generative attribute regression and multi-view contrastive learning for anomaly detection.
We conduct extensive experiments on six benchmark datasets and the results demonstrate that our method outperforms state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-08-23T02:15:21Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.