論文の概要: Voxel-based Network for Shape Completion by Leveraging Edge Generation
- arxiv url: http://arxiv.org/abs/2108.09936v1
- Date: Mon, 23 Aug 2021 05:10:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-24 16:04:12.820887
- Title: Voxel-based Network for Shape Completion by Leveraging Edge Generation
- Title(参考訳): エッジ生成を利用したVoxel-based Shape Completion
- Authors: Xiaogang Wang, Marcelo H Ang Jr and Gim Hee Lee
- Abstract要約: エッジ生成(VE-PCN)を利用した点雲補完のためのボクセルネットワークを開発した。
まず点雲を正規のボクセル格子に埋め込み、幻覚した形状のエッジの助けを借りて完全な物体を生成する。
この分離されたアーキテクチャとマルチスケールのグリッド機能学習は、より現実的な表面上の詳細を生成することができる。
- 参考スコア(独自算出の注目度): 76.23436070605348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning technique has yielded significant improvements in point cloud
completion with the aim of completing missing object shapes from partial
inputs. However, most existing methods fail to recover realistic structures due
to over-smoothing of fine-grained details. In this paper, we develop a
voxel-based network for point cloud completion by leveraging edge generation
(VE-PCN). We first embed point clouds into regular voxel grids, and then
generate complete objects with the help of the hallucinated shape edges. This
decoupled architecture together with a multi-scale grid feature learning is
able to generate more realistic on-surface details. We evaluate our model on
the publicly available completion datasets and show that it outperforms
existing state-of-the-art approaches quantitatively and qualitatively. Our
source code is available at https://github.com/xiaogangw/VE-PCN.
- Abstract(参考訳): ディープラーニング技術は、部分的な入力からオブジェクトの形を欠くことを目標として、ポイントクラウドの補完を大幅に改善した。
しかし,既存の手法では細かな細部を過度にスムーシングするため,現実的な構造を復元できない場合が多い。
本稿では,エッジ生成(VE-PCN)を活用して,点雲補完のためのボクセルネットワークを開発する。
まず点雲を正規のボクセル格子に埋め込み、幻覚した形状のエッジの助けを借りて完全な物体を生成する。
この分離されたアーキテクチャとマルチスケールグリッド機能学習は、より現実的な表面上の詳細を生成することができる。
我々は,公開可能な完成データセット上でモデルを評価し,既存の最先端のアプローチを定量的かつ質的に上回ることを示す。
ソースコードはhttps://github.com/xiaogangw/ve-pcnで入手できます。
関連論文リスト
- Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
我々は、オブジェクトレベルとカテゴリ固有の幾何学的類似性の両方を効果的に活用するフレームワークであるMAL-SPCを提案する。
私たちのMAL-SPCは3Dの完全な監視を一切必要とせず、各オブジェクトに1つの部分点クラウドを必要とするだけです。
論文 参考訳(メタデータ) (2024-07-13T06:53:39Z) - Point Cloud Completion Guided by Prior Knowledge via Causal Inference [19.935868881427226]
本稿では,ポイントPCと呼ばれる新たなクラウド完了タスクを提案する。
Point-PCはメモリネットワークを用いて形状の先行情報を検索し、因果推論モデルを設計し、欠落した形状情報をフィルタリングする。
ShapeNet-55、PCN、KITTIデータセットの実験結果から、Point-PCは最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-28T16:33:35Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
可変点雲補完法は、局所的な詳細を欠くため、大域的な形状の骨格を生成する傾向がある。
本稿では2つの魅力的な特性を持つ変分フレームワークであるポイントコンプリートネットワーク(VRCNet)を提案する。
VRCNetは、現実世界のポイントクラウドスキャンにおいて、非常に一般化性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-04-18T17:03:20Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - Point cloud completion on structured feature map with feedback network [28.710494879042002]
本稿では,FSNetを提案する。FSNetは,ポイントワイドな特徴を適応的に2次元構造的特徴マップに集約できる機能構造化モジュールである。
2次元畳み込みニューラルネットワークを用いて、FSNetから粗い完全点クラウドに特徴マップをデコードする。
点雲アップサンプリングネットワークを用いて、部分入力と粗い中間出力から高密度点雲を生成する。
論文 参考訳(メタデータ) (2022-02-17T10:59:40Z) - Graph-Guided Deformation for Point Cloud Completion [35.10606375236494]
本稿では,入力データと中間生成を制御および支持点とみなすグラフガイド変形ネットワークを提案する。
我々の重要な洞察は、メッシュ変形法による最小2乗ラプラシア変形過程をシミュレートすることであり、幾何学的詳細のモデリングに適応性をもたらす。
我々はGCN誘導変形による従来のグラフィックアルゴリズムを模倣して、ポイントクラウド補完タスクを改良した最初の人物である。
論文 参考訳(メタデータ) (2021-11-11T12:55:26Z) - Cascaded Refinement Network for Point Cloud Completion with
Self-supervision [74.80746431691938]
形状整形のための2分岐ネットワークを提案する。
第1分枝は、完全なオブジェクトを合成するためのカスケード形状補完サブネットワークである。
第2のブランチは、元の部分入力を再構築する自動エンコーダである。
論文 参考訳(メタデータ) (2020-10-17T04:56:22Z) - Cascaded Refinement Network for Point Cloud Completion [74.80746431691938]
本稿では,細かな物体形状を合成するための粗大な戦略とともに,カスケード型精細化ネットワークを提案する。
部分入力の局所的な詳細と大域的な形状情報を合わせて考えると、既存の詳細を不完全点集合に保存することができる。
また、各局所領域が同じパターンと基底的真理を持つことを保証し、複雑な点分布を学習するパッチ判別器を設計する。
論文 参考訳(メタデータ) (2020-04-07T13:03:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。