論文の概要: Point Cloud Compression with Implicit Neural Representations: A Unified Framework
- arxiv url: http://arxiv.org/abs/2405.11493v1
- Date: Sun, 19 May 2024 09:19:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 17:18:28.098463
- Title: Point Cloud Compression with Implicit Neural Representations: A Unified Framework
- Title(参考訳): 暗黙のニューラル表現によるポイントクラウド圧縮:統一フレームワーク
- Authors: Hongning Ruan, Yulin Shao, Qianqian Yang, Liang Zhao, Dusit Niyato,
- Abstract要約: 我々は幾何学と属性の両方を扱える先駆的なクラウド圧縮フレームワークを提案する。
本フレームワークでは,2つの座標ベースニューラルネットワークを用いて,voxelized point cloudを暗黙的に表現する。
本手法は,既存の学習手法と比較して,高い普遍性を示す。
- 参考スコア(独自算出の注目度): 54.119415852585306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point clouds have become increasingly vital across various applications thanks to their ability to realistically depict 3D objects and scenes. Nevertheless, effectively compressing unstructured, high-precision point cloud data remains a significant challenge. In this paper, we present a pioneering point cloud compression framework capable of handling both geometry and attribute components. Unlike traditional approaches and existing learning-based methods, our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud. The first network generates the occupancy status of a voxel, while the second network determines the attributes of an occupied voxel. To tackle an immense number of voxels within the volumetric space, we partition the space into smaller cubes and focus solely on voxels within non-empty cubes. By feeding the coordinates of these voxels into the respective networks, we reconstruct the geometry and attribute components of the original point cloud. The neural network parameters are further quantized and compressed. Experimental results underscore the superior performance of our proposed method compared to the octree-based approach employed in the latest G-PCC standards. Moreover, our method exhibits high universality when contrasted with existing learning-based techniques.
- Abstract(参考訳): ポイントクラウドは、3Dオブジェクトやシーンをリアルに描写する能力のおかげで、様々なアプリケーションでますます重要になっている。
それでも、非構造化で高精度なクラウドデータを効果的に圧縮することは大きな課題である。
本稿では,幾何学と属性の両方を扱える先駆的なクラウド圧縮フレームワークを提案する。
従来のアプローチや既存の学習ベースの手法とは異なり、我々のフレームワークは2つの座標ベースのニューラルネットワークを使用して、voxelized point cloudを暗黙的に表現する。
第1のネットワークはボクセルの占有状態を生成し、第2のネットワークは占有されたボクセルの属性を決定する。
体積空間内の膨大な数のボクセルに取り組むために、空間をより小さな立方体に分割し、空でない立方体内のボクセルのみにフォーカスする。
これらのボクセルの座標を各ネットワークに供給することにより、元の点雲の幾何成分と属性成分を再構成する。
ニューラルネットワークパラメータはさらに量子化され、圧縮される。
その結果,最新のG-PCC標準で採用されているオクツリー方式と比較して,提案手法の優れた性能が示された。
さらに,本手法は既存の学習手法と対比した場合,高い普遍性を示す。
関連論文リスト
- PIVOT-Net: Heterogeneous Point-Voxel-Tree-based Framework for Point
Cloud Compression [8.778300313732027]
異種クラウド圧縮(PCC)フレームワークを提案する。
私たちは、典型的なポイントクラウド表現 -- ポイントベース、ボクセルベース、ツリーベース表現 -- と関連するバックボーンを統一します。
本稿では,デコードのためのコンテキスト対応アップサンプリングと,機能集約のための拡張ボクセルトランスフォーマーによりフレームワークを増強する。
論文 参考訳(メタデータ) (2024-02-11T16:57:08Z) - Patch-Wise Point Cloud Generation: A Divide-and-Conquer Approach [83.05340155068721]
分割・分散アプローチを用いた新しい3dポイントクラウド生成フレームワークを考案する。
すべてのパッチジェネレータは学習可能な事前情報に基づいており、幾何学的プリミティブの情報を取得することを目的としている。
最も人気のあるポイントクラウドデータセットであるShapeNetのさまざまなオブジェクトカテゴリに関する実験結果は、提案したパッチワイドポイントクラウド生成の有効性を示している。
論文 参考訳(メタデータ) (2023-07-22T11:10:39Z) - Voxel or Pillar: Exploring Efficient Point Cloud Representation for 3D
Object Detection [49.324070632356296]
我々は3次元および2次元のスパース畳み込みにより点雲をボクセルと柱の特徴に符号化するスパース・ボクセル・ピラーエンコーダを開発した。
我々の効率的で完全なスパース法は、密度検出器とスパース検出器の両方にシームレスに統合できる。
論文 参考訳(メタデータ) (2023-04-06T05:00:58Z) - Learning Neural Volumetric Field for Point Cloud Geometry Compression [13.691147541041804]
我々は、ニューラルネットワークを学習することで、与えられた点雲の幾何学をコーディングすることを提案する。
空間全体を小さな立方体に分割し,各空でない立方体をニューラルネットワークと入力潜時符号で表現する。
ネットワークは、空間的および時間的冗長性を利用するために、1つのフレームまたは複数のフレームで全ての立方体間で共有される。
論文 参考訳(メタデータ) (2022-12-11T19:55:24Z) - Point Cloud Semantic Segmentation using Multi Scale Sparse Convolution
Neural Network [0.0]
本稿では,マルチスケール超スパース畳み込みに基づく特徴抽出モジュールと,チャネルアテンションに基づく特徴選択モジュールを提案する。
マルチスケールのスパース畳み込みを導入することで、ネットワークは異なるサイズの畳み込みカーネルに基づいてよりリッチな特徴情報をキャプチャできる。
論文 参考訳(メタデータ) (2022-05-03T15:01:20Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - Voxel-based Network for Shape Completion by Leveraging Edge Generation [76.23436070605348]
エッジ生成(VE-PCN)を利用した点雲補完のためのボクセルネットワークを開発した。
まず点雲を正規のボクセル格子に埋め込み、幻覚した形状のエッジの助けを借りて完全な物体を生成する。
この分離されたアーキテクチャとマルチスケールのグリッド機能学習は、より現実的な表面上の詳細を生成することができる。
論文 参考訳(メタデータ) (2021-08-23T05:10:29Z) - VoxelContext-Net: An Octree based Framework for Point Cloud Compression [20.335998518653543]
静的および動的ポイントクラウド圧縮のための2段階のディープラーニングフレームワークvoxelcontext-netを提案する。
まず,構築したオクツリーの各ノードの空間近傍コンテキスト情報を符号化した局所ボクセル表現を抽出する。
エントロピー符号化の段階では,非リーフノードのシンボルを圧縮するボクセルコンテキストに基づくディープエントロピーモデルを提案する。
論文 参考訳(メタデータ) (2021-05-05T16:12:48Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Progressive Point Cloud Deconvolution Generation Network [37.50448637246364]
潜在ベクトルから同一形状の多分解能点雲を生成できる有効点雲生成法を提案する。
局所的特徴写像と大域的特徴写像の異なる分解能を結合することにより、多層パーセプトロンを生成ネットワークとして利用し、多層点雲を生成する。
点雲の異なる分解能の形状を一定に保つため, 点雲デコンボリューション生成ネットワークをトレーニングするための形状保存対向損失を提案する。
論文 参考訳(メタデータ) (2020-07-10T13:07:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。