Point Cloud Completion Guided by Prior Knowledge via Causal Inference
- URL: http://arxiv.org/abs/2305.17770v2
- Date: Sat, 16 Dec 2023 04:04:39 GMT
- Title: Point Cloud Completion Guided by Prior Knowledge via Causal Inference
- Authors: Songxue Gao, Chuanqi Jiao, Ruidong Chen, Weijie Wang, Weizhi Nie
- Abstract summary: We propose a novel approach to point cloud completion task called Point-PC.
Point-PC uses a memory network to retrieve shape priors and designs a causal inference model to filter missing shape information.
Experimental results on the ShapeNet-55, PCN, and KITTI datasets demonstrate that Point-PC outperforms the state-of-the-art methods.
- Score: 19.935868881427226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud completion aims to recover raw point clouds captured by scanners
from partial observations caused by occlusion and limited view angles. This
makes it hard to recover details because the global feature is unlikely to
capture the full details of all missing parts. In this paper, we propose a
novel approach to point cloud completion task called Point-PC, which uses a
memory network to retrieve shape priors and designs a causal inference model to
filter missing shape information as supplemental geometric information to aid
point cloud completion. Specifically, we propose a memory operating mechanism
where the complete shape features and the corresponding shapes are stored in
the form of ``key-value'' pairs. To retrieve similar shapes from the partial
input, we also apply a contrastive learning-based pre-training scheme to
transfer the features of incomplete shapes into the domain of complete shape
features. Experimental results on the ShapeNet-55, PCN, and KITTI datasets
demonstrate that Point-PC outperforms the state-of-the-art methods.
Related papers
- Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
We propose MAL-SPC, a framework that effectively leverages both object-level and category-specific geometric similarities to complete missing structures.
Our MAL-SPC does not require any 3D complete supervision and only necessitates a single partial point cloud for each object.
arXiv Detail & Related papers (2024-07-13T06:53:39Z) - P2C: Self-Supervised Point Cloud Completion from Single Partial Clouds [44.02541315496045]
Point cloud completion aims to recover the complete shape based on a partial observation.
Existing methods require either complete point clouds or multiple partial observations of the same object for learning.
We present Partial2Complete, the first self-supervised framework that completes point cloud objects.
arXiv Detail & Related papers (2023-07-27T09:31:01Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - Prototype-Aware Heterogeneous Task for Point Cloud Completion [35.47134205562422]
Point cloud completion aims at recovering original shape information from partial point clouds.
Existing methods usually succeed in completion for standard shape, while failing to generate local details of point clouds for some non-standard shapes.
In this work, we design an effective way to distinguish standard/non-standard shapes with the help of intra-class shape representation.
arXiv Detail & Related papers (2022-09-05T02:43:06Z) - Variational Relational Point Completion Network [41.98957577398084]
Existing point cloud completion methods generate global shape skeletons and lack fine local details.
This paper proposes Variational point Completion network (VRCNet) with two appealing properties.
VRCNet shows greatizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2021-04-20T17:53:40Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
Point cloud completion is the task of predicting complete geometry from partial observations using a point set representation for a 3D shape.
Previous approaches propose neural networks to directly estimate the whole point cloud through encoder-decoder models fed by the incomplete point set.
This paper proposes an end-to-end neural network architecture that focuses on computing the missing geometry and merging the known input and the predicted point cloud.
arXiv Detail & Related papers (2020-10-08T22:01:23Z) - Point Cloud Completion by Learning Shape Priors [74.80746431691938]
shape priors include geometric information in both complete and partial point clouds.
We design a feature alignment strategy to learn the shape prior from complete points, and a coarse to fine strategy to incorporate partial prior in the fine stage.
We achieve state-of-the-art performances on the point cloud completion task.
arXiv Detail & Related papers (2020-08-02T04:00:32Z) - Point Cloud Completion by Skip-attention Network with Hierarchical
Folding [61.59710288271434]
We propose Skip-Attention Network (SA-Net) for 3D point cloud completion.
First, we propose a skip-attention mechanism to effectively exploit the local structure details of incomplete point clouds.
Second, in order to fully utilize the selected geometric information encoded by skip-attention mechanism at different resolutions, we propose a novel structure-preserving decoder.
arXiv Detail & Related papers (2020-05-08T06:23:51Z) - Cascaded Refinement Network for Point Cloud Completion [74.80746431691938]
We propose a cascaded refinement network together with a coarse-to-fine strategy to synthesize the detailed object shapes.
Considering the local details of partial input with the global shape information together, we can preserve the existing details in the incomplete point set.
We also design a patch discriminator that guarantees every local area has the same pattern with the ground truth to learn the complicated point distribution.
arXiv Detail & Related papers (2020-04-07T13:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.