論文の概要: On the Acceleration of Deep Neural Network Inference using Quantized
Compressed Sensing
- arxiv url: http://arxiv.org/abs/2108.10101v1
- Date: Mon, 23 Aug 2021 12:03:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-24 15:52:42.154937
- Title: On the Acceleration of Deep Neural Network Inference using Quantized
Compressed Sensing
- Title(参考訳): 量子圧縮センシングを用いたディープニューラルネットワーク推論の高速化について
- Authors: Meshia C\'edric Oveneke
- Abstract要約: 量子化圧縮センシング(QCS)に基づく新しいバイナリ量子化関数を提案する。
提案手法は, 量子化誤差を低減し, 精度を低下させるとともに, 標準手法の実用的メリットを保っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accelerating deep neural network (DNN) inference on resource-limited devices
is one of the most important barriers to ensuring a wider and more inclusive
adoption. To alleviate this, DNN binary quantization for faster convolution and
memory savings is one of the most promising strategies despite its serious drop
in accuracy. The present paper therefore proposes a novel binary quantization
function based on quantized compressed sensing (QCS). Theoretical arguments
conjecture that our proposal preserves the practical benefits of standard
methods, while reducing the quantization error and the resulting drop in
accuracy.
- Abstract(参考訳): リソース制限されたデバイス上でのディープニューラルネットワーク(DNN)推論の高速化は、より広範な包括的採用を保証する上で最も重要な障壁のひとつだ。
これを軽減するために、DNNのバイナリ量子化による高速な畳み込みとメモリ節約は、精度の大幅な低下にもかかわらず、最も有望な戦略の1つである。
そこで本研究では,量子化圧縮センシング(QCS)に基づく新しいバイナリ量子化関数を提案する。
理論的な議論では、提案手法は量子化誤差と結果の精度低下を低減しつつ、標準手法の実用的利点を保っている。
関連論文リスト
- ZOBNN: Zero-Overhead Dependable Design of Binary Neural Networks with Deliberately Quantized Parameters [0.0]
本稿では,低精度ニューラルネットワークの3番目の利点として,耐故障性の改善について紹介する。
本稿では,メモリ障害がBNN(State-of-the-art binary neural network)に与える影響を包括的解析により検討する。
本稿では,新しい均一量子化手法により,フロートパラメータの範囲を制限することにより,BNNの信頼性を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-07-06T05:31:11Z) - Gradient-based Automatic Mixed Precision Quantization for Neural Networks On-Chip [0.9187138676564589]
本稿では,革新的な量子化学習手法である高粒度量子化(HGQ)を提案する。
HGQは、勾配降下によって最適化できるようにすることで、重量当たりおよび活動当たりの精度を微調整する。
このアプローチは、演算演算が可能なハードウェア上で、超低レイテンシと低電力ニューラルネットワークを実現する。
論文 参考訳(メタデータ) (2024-05-01T17:18:46Z) - Binarizing Sparse Convolutional Networks for Efficient Point Cloud
Analysis [93.55896765176414]
我々は,効率的な点群解析のためのBSC-Netと呼ばれるバイナリスパース畳み込みネットワークを提案する。
我々は,移動したスパース畳み込みにおけるサイトマッチングに最適なオプションを見つけるために,異なる検索戦略を採用している。
我々のBSC-Netは、我々の厳格なベースラインを大幅に改善し、最先端のネットワーク双対化手法より優れています。
論文 参考訳(メタデータ) (2023-03-27T13:47:06Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Automatic Network Adaptation for Ultra-Low Uniform-Precision
Quantization [6.1664476076961146]
一様精度ニューラルネットワーク量子化は、高計算能力のために高密度に充填された演算ユニットを単純化したため、人気を集めている。
層間の量子化誤差の影響に対して不均一な感度を無視し、結果として準最適推論をもたらす。
本研究は,超低精度量子化による精度劣化を軽減するために,ニューラルネットワーク構造を調整するニューラルチャネル拡張と呼ばれる新しいニューラルアーキテクチャ探索を提案する。
論文 参考訳(メタデータ) (2022-12-21T09:41:25Z) - CoNLoCNN: Exploiting Correlation and Non-Uniform Quantization for
Energy-Efficient Low-precision Deep Convolutional Neural Networks [13.520972975766313]
本研究では、重みの非一様量子化を利用して、エネルギー効率の低い深部畳み込みニューラルネットワーク推論を可能にする枠組みを提案する。
また、重みのビット幅を圧縮する新しいデータ表現形式Encoded Low-Precision Binary Signed Digitを提案する。
論文 参考訳(メタデータ) (2022-07-31T01:34:56Z) - Learning Representations for CSI Adaptive Quantization and Feedback [51.14360605938647]
本稿では,周波数分割二重化システムにおける適応量子化とフィードバックの効率的な手法を提案する。
既存の研究は主に、CSI圧縮のためのオートエンコーダ(AE)ニューラルネットワークの実装に焦点を当てている。
1つはポストトレーニング量子化に基づくもので、もう1つはAEのトレーニング中にコードブックが見つかる方法である。
論文 参考訳(メタデータ) (2022-07-13T08:52:13Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
学習後ニューラルネットワーク量子化手法であるGPFQを,欲求経路追従機構に基づいて修正する。
単層ネットワークを定量化するためには、相対二乗誤差は本質的に重み数で線形に減衰する。
論文 参考訳(メタデータ) (2022-01-26T18:47:38Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
効率と精度を両立させるためのフル量子化画像超解像フレームワーク(FQSR)を提案する。
我々は、SRResNet、SRGAN、EDSRを含む複数の主流超解像アーキテクチャに量子化スキームを適用した。
低ビット量子化を用いたFQSRは、5つのベンチマークデータセットの完全精度と比較すると、パー性能で実現できる。
論文 参考訳(メタデータ) (2020-11-29T03:53:49Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。