Parasitic erbium photoluminescence in commercial telecom fiber optical
components
- URL: http://arxiv.org/abs/2108.10126v1
- Date: Fri, 13 Aug 2021 22:41:56 GMT
- Title: Parasitic erbium photoluminescence in commercial telecom fiber optical
components
- Authors: Gary Wolfowicz, F. Joseph Heremans, David D. Awschalom
- Abstract summary: We characterize telecom C-band fiber components for parasitic noise using a tunable laser.
Due to the long erbium lifetime, these signals are challenging to mitigate at the single photon level in the telecom range.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Noiseless optical components are critical for applications ranging from
metrology to quantum communication. Here we characterize several commercial
telecom C-band fiber components for parasitic noise using a tunable laser. We
observe the spectral signature of trace concentrations of erbium in all devices
from the underlying optical crystals including YVO4, LiNbO3, TeO2 and AMTIR
glass. Due to the long erbium lifetime, these signals are challenging to
mitigate at the single photon level in the telecom range, and suggests the need
for higher purity optical crystals.
Related papers
- Check-probe spectroscopy of lifetime-limited emitters in bulk-grown silicon carbide [0.4711628883579317]
We introduce a high-bandwidth check-probe' scheme to measure (laser-induced) spectral diffusion and ionisation rates.
We demonstrate these methods on single V2 centers in commercially available bulk-grown 4H-silicon carbide.
These results advance our understanding of spectral diffusion of quantum emitters in semiconductor materials, and may have applications for studying charge dynamics across other platforms.
arXiv Detail & Related papers (2024-09-19T18:00:03Z) - Scalable microwave-to-optical transducers at single photon level with spins [4.142140287566351]
Microwave-to-optical transduction of single photons will play an essential role in interconnecting future superconducting quantum devices.
We implement an on-chip microwave-to-optical transducer using rare-earth ion (REI) doped crystals.
We demonstrate the interference of photons originating from two simultaneously operated transducers, enabled by the inherent absolute frequencies of the atomic transitions.
arXiv Detail & Related papers (2024-07-11T21:43:02Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Efficient Photonic Integration of Diamond Color Centers and Thin-Film
Lithium Niobate [0.0]
negatively charged group-IV color centers in diamond are promising candidates for quantum memories.
Thin-film lithium niobate (TFLN) offers a number of useful photonic nonlinearities.
We present highly efficient integration of diamond nanobeams containing negatively charged silicon-vacancy (SiV) centers with TFLN waveguides.
arXiv Detail & Related papers (2023-06-27T05:04:32Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Purcell enhancement of erbium ions in TiO$_{2}$ on silicon nanocavities [0.10536400529241725]
Isolated solid-state atomic defects with telecom optical transitions are ideal quantum photon emitters and spin qubits.
We present a scalable approach towards CMOS-compatible telecom qubits by using erbium-doped titanium dioxide thin films grown atop silicon-on-insulator substrates.
arXiv Detail & Related papers (2022-04-21T03:15:26Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Understanding photoluminescence in semiconductor Bragg-reflection
waveguides: Towards an integrated, GHz-rate telecom photon pair source [47.399953444625154]
semiconductor integrated sources of photon pairs may operate at pump wavelengths much closer to the bandgap of the materials.
We show that devices operating near the long wavelength end of the S-band or the short C-band require temporal filtering shorter than 1 ns.
We predict that shifting the operating wavelengths to the L-band and making small adjustments in the material composition will reduce the amount of photoluminescence to negligible values.
arXiv Detail & Related papers (2020-10-12T06:27:30Z) - Raman-free fibered photon-pair source [0.0]
Raman-scattering noise in silica has been the key obstacle toward the realisation of high quality fiber-based photon-pair sources.
This work demonstrates that hollow-core photonic crystal fiber is an excellent platform to design high quality photon-pair sources.
arXiv Detail & Related papers (2020-01-06T12:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.