Check-probe spectroscopy of lifetime-limited emitters in bulk-grown silicon carbide
- URL: http://arxiv.org/abs/2409.13018v1
- Date: Thu, 19 Sep 2024 18:00:03 GMT
- Title: Check-probe spectroscopy of lifetime-limited emitters in bulk-grown silicon carbide
- Authors: G. L. van de Stolpe, L. J. Feije, S. J. H. Loenen, A. Das, G. M. Timmer, T. W. de Jong, T. H. Taminiau,
- Abstract summary: We introduce a high-bandwidth check-probe' scheme to measure (laser-induced) spectral diffusion and ionisation rates.
We demonstrate these methods on single V2 centers in commercially available bulk-grown 4H-silicon carbide.
These results advance our understanding of spectral diffusion of quantum emitters in semiconductor materials, and may have applications for studying charge dynamics across other platforms.
- Score: 0.4711628883579317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solid-state single-photon emitters provide a versatile platform for exploring quantum technologies such as optically connected quantum networks. A key challenge is to ensure optical coherence and spectral stability of the emitters. Here, we introduce a high-bandwidth `check-probe' scheme to quantitatively measure (laser-induced) spectral diffusion and ionisation rates, as well as homogeneous linewidths. We demonstrate these methods on single V2 centers in commercially available bulk-grown 4H-silicon carbide. Despite observing significant spectral diffusion under laser illumination ($\gtrsim$ GHz/s), the optical transitions are narrow ($\sim$35 MHz), and remain stable in the dark ($\gtrsim$1 s). Through Landau-Zener-St\"uckelberg interferometry, we determine the optical coherence to be near-lifetime limited ($T_2 = 16.4(4)$ ns), hinting at the potential for using bulk-grown materials for developing quantum technologies. These results advance our understanding of spectral diffusion of quantum emitters in semiconductor materials, and may have applications for studying charge dynamics across other platforms.
Related papers
- Narrow optical linewidths in stoichiometric layered rare-earth crystals [0.0]
Rare-earth emitters in solids are well-suited for implementing efficient, long-lived quantum memory.
We show narrow optical linewidths in a layered stoichiometric crystalline material.
arXiv Detail & Related papers (2024-11-04T23:49:41Z) - Coherent spectroscopy of a single Mn-doped InGaAs quantum dot [0.0]
Doping a self-assembled InGaAs/GaAs quantum dot with a single Mn atom provides a quantum system with discrete energy levels and original spin-dependent optical selection rules.
We show evidence for quantum interference within the V-like system and assess the pure dephasing rate between the corresponding spin states.
arXiv Detail & Related papers (2024-10-25T13:03:40Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Large Single-Phonon Optomechanical Coupling between Quantum Dots and
Tightly Confined Surface Acoustic Waves in the Quantum Regime [1.7039969990048311]
Small acoustic cavities with large zero-point motion are required for high efficiencies.
We experimentally establish the feasibility of this platform through electro- and opto-mechanical characterization.
We show conversion between microwave phonons and optical photons with sub-natural linewidths.
arXiv Detail & Related papers (2022-05-03T02:53:01Z) - Heralded spectroscopy reveals exciton-exciton correlations in single
colloidal quantum dots [0.8911822441893501]
We introduce biexciton heralded spectroscopy, enabled by a single-photon avalanche diode array based spectrometer.
This allows us to directly observe biexciton-exciton emission cascades and measure the biexciton binding energy of single quantum dots at room temperature.
We uncover correlations hitherto masked in ensembles, of the biexciton binding energy with both charge-carrier confinement and fluctuations of the local electrostatic potential.
arXiv Detail & Related papers (2021-08-01T00:41:57Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Narrow inhomogeneous distribution of spin-active emitters in silicon
carbide [1.4316595458440022]
We show that silicon vacancy centres in semiconductor silicon carbide (SiC) provide a remarkably small natural distribution of their optical absorption/emission lines.
Our results underline the potential of the CMOS-compatible SiC platform toward realizing networked quantum technology applications.
arXiv Detail & Related papers (2021-03-10T14:56:17Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.