論文の概要: Predicting Vehicles' Longitudinal Trajectories and Lane Changes on
Highway On-Ramps
- arxiv url: http://arxiv.org/abs/2108.10397v1
- Date: Mon, 23 Aug 2021 20:38:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-25 14:07:05.932986
- Title: Predicting Vehicles' Longitudinal Trajectories and Lane Changes on
Highway On-Ramps
- Title(参考訳): 自動車の縦軌道予測と高架道路の車線変化
- Authors: Nachuan Li, Riley Fischer, Wissam Kontar, Soyoung Ahn
- Abstract要約: 高速道路のオンランプの車両は渋滞の主要な要因の1つだ。
高速道路における車両の縦方向の軌跡と車線変化(LC)を予測するための予測フレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.580765958706854
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Vehicles on highway on-ramps are one of the leading contributors to
congestion. In this paper, we propose a prediction framework that predicts the
longitudinal trajectories and lane changes (LCs) of vehicles on highway
on-ramps and tapers. Specifically, our framework adopts a combination of
prediction models that inputs a 4 seconds duration of a trajectory to output a
forecast of the longitudinal trajectories and LCs up to 15 seconds ahead.
Training and Validation based on next generation simulation (NGSIM) data show
that the prediction power of the developed model and its accuracy outperforms a
traditional long-short term memory (LSTM) model. Ultimately, the work presented
here can alleviate the congestion experienced on on-ramps, improve safety, and
guide effective traffic control strategies.
- Abstract(参考訳): 高速道路を走行する車両は渋滞の原因の1つだ。
本稿では,高速道路における車両の縦方向の軌跡と車線変化(LC)を予測するための予測フレームワークを提案する。
具体的には,軌道の4秒間を入力し,最大15秒前の長手軌跡とLCの予測を出力する予測モデルを組み合わせる。
次世代シミュレーション(NGSIM)データに基づくトレーニングと検証により,開発したモデルの予測能力とその精度は,従来の長短メモリ(LSTM)モデルよりも優れていた。
最終的に、ここで提示された作業は、オンランプで経験する渋滞を緩和し、安全性を改善し、効果的な交通制御戦略を導くことができる。
関連論文リスト
- Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
我々のソリューションはArgoverse 2 end-to-end Forecasting Challengeで63.82 mAPfでランクインした。
私たちは、知覚から予測までエンドツーエンドのトレーニングを通じて、このタスクに取り組む現在のトレンドから離れ、代わりにモジュラーアプローチを使用します。
私たちは、昨年の優勝者より+17.1ポイント、今年の優勝者より+13.3ポイント、予測結果を+17.1ポイント上回る。
論文 参考訳(メタデータ) (2024-06-12T11:50:51Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Trajectory Prediction with Observations of Variable-Length for Motion
Planning in Highway Merging scenarios [5.193470362635256]
既存の手法では、2秒以上の一定期間の観測がなければ、車両の予測を開始することはできない。
本稿では,1フレーム以上の観測長を扱うために特別に訓練されたトランスフォーマーを用いた軌道予測手法を提案する。
2つの大規模高速道路軌道データセットを用いて提案手法の総合評価を行う。
論文 参考訳(メタデータ) (2023-06-08T18:03:48Z) - TrafFormer: A Transformer Model for Predicting Long-term Traffic [3.6776225248989536]
長期的な交通予測は、交通渋滞に対するより包括的で情報があり、予防的な対策を可能にする。
我々は,24時間前のトラフィックを予測するために,改良されたトランスフォーマーモデルTrafFormerを提案する。
論文 参考訳(メタデータ) (2023-02-24T01:29:21Z) - Deep Learning-Based Vehicle Speed Prediction for Ecological Adaptive
Cruise Control in Urban and Highway Scenarios [0.5161531917413706]
典型的な自動車追従シナリオでは、目標車両の速度変動はホスト車両の外部障害として作用し、そのエネルギー消費に影響を与える。
本研究では,長寿命メモリ(LSTM)とゲートリカレントユニット(GRU)を用いたディープリカレントニューラルネットワークに基づく車両速度予測について検討した。
提案した速度予測モデルは、目標車両の将来の速度の長期予測(最大10秒)に対して評価される。
論文 参考訳(メタデータ) (2022-11-30T22:50:43Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
論文 参考訳(メタデータ) (2022-09-19T03:34:59Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
動脈交通予測は 現代のインテリジェント交通システムの発展に 重要な役割を担っています
動脈交通予測に関する既存の研究の多くは、ループセンサからの流量と占有率の時間的測定のみを考慮し、上流と下流の検出器間のリッチな空間的関係を無視している。
我々は,信号タイミング計画から発生する空間情報を用いて,深層学習アプローチである拡散畳み込みリカレントニューラルネットワークを強化することで,このギャップを埋める。
論文 参考訳(メタデータ) (2020-12-25T01:40:29Z) - Trajectory Prediction in Autonomous Driving with a Lane Heading
Auxiliary Loss [1.1470070927586014]
本稿では,全ての予測モードにおいて予測駆動ルールを強制することにより,軌道予測モデルを強化する損失関数を提案する。
軌道予測への我々の貢献は2倍であり、オフロードレート計量の故障事例に対処する新しい指標を提案する。
次に、この補助損失を用いて、MTP(Multiple trajectory Prediction)モデルとMultiPathモデルを拡張する。
論文 参考訳(メタデータ) (2020-11-12T22:51:25Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z) - Traffic Modelling and Prediction via Symbolic Regression on Road Sensor
Data [0.8602553195689513]
本稿では,ラグ演算子により強化されたシンボル回帰に基づく,新しいかつ正確な交通流予測手法を提案する。
提案手法は都市道路の複雑度に適したロバストモデルであり,高速道路よりも予測が困難である。
論文 参考訳(メタデータ) (2020-02-14T16:03:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。