論文の概要: Adversarial Robustness of Deep Learning: Theory, Algorithms, and
Applications
- arxiv url: http://arxiv.org/abs/2108.10451v1
- Date: Tue, 24 Aug 2021 00:08:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-25 21:06:28.853391
- Title: Adversarial Robustness of Deep Learning: Theory, Algorithms, and
Applications
- Title(参考訳): ディープラーニングの敵対的ロバスト性:理論・アルゴリズム・応用
- Authors: Wenjie Ruan and Xinping Yi and Xiaowei Huang
- Abstract要約: 本チュートリアルは,ディープラーニングの敵対的堅牢性の基礎を紹介することを目的としている。
我々は、ディープニューラルネットワーク(DNN)の敵攻撃と堅牢性検証における最先端技術を強調します。
深層学習モデルの堅牢性を改善するための効果的な対策も導入する。
- 参考スコア(独自算出の注目度): 27.033174829788404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This tutorial aims to introduce the fundamentals of adversarial robustness of
deep learning, presenting a well-structured review of up-to-date techniques to
assess the vulnerability of various types of deep learning models to
adversarial examples. This tutorial will particularly highlight
state-of-the-art techniques in adversarial attacks and robustness verification
of deep neural networks (DNNs). We will also introduce some effective
countermeasures to improve the robustness of deep learning models, with a
particular focus on adversarial training. We aim to provide a comprehensive
overall picture about this emerging direction and enable the community to be
aware of the urgency and importance of designing robust deep learning models in
safety-critical data analytical applications, ultimately enabling the end-users
to trust deep learning classifiers. We will also summarize potential research
directions concerning the adversarial robustness of deep learning, and its
potential benefits to enable accountable and trustworthy deep learning-based
data analytical systems and applications.
- Abstract(参考訳): 本チュートリアルは, 各種深層学習モデルの脆弱性を, 逆例として評価するための, 最新の手法をよく構築したレビューとして紹介することを目的としている。
このチュートリアルは特に、ディープニューラルネットワーク(DNN)の敵攻撃と堅牢性検証における最先端技術を強調している。
深層学習モデルのロバスト性を改善するための効果的な対策についても紹介する。
我々は、この新たな方向性に関する総合的な全体像を提供し、安全-クリティカルなデータ分析アプリケーションにおける堅牢なディープラーニングモデルの設計の緊急性と重要性をコミュニティに認識させ、最終的にはエンドユーザがディープラーニング分類器を信頼できるようにする。
また、深層学習の敵意的堅牢性に関する潜在的研究の方向性と、信頼性の高い深層学習に基づくデータ分析システムとアプリケーションを実現するための潜在的な利点を要約する。
関連論文リスト
- FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks [0.0]
敵対的攻撃は、画像分類におけるディープラーニングモデルの堅牢性に重大な脅威をもたらす。
本稿では,ニューラルネットワークのレジリエンスを高めるために,これらの攻撃に対する防御機構を探索し,洗練する。
論文 参考訳(メタデータ) (2024-08-20T02:00:02Z) - Towards Improving Robustness Against Common Corruptions using Mixture of
Class Specific Experts [10.27974860479791]
本稿では,クラス特化エキスパートアーキテクチャの混合として知られる新しいパラダイムを紹介する。
提案したアーキテクチャは、一般的なニューラルネットワーク構造に関連する脆弱性を軽減することを目的としている。
論文 参考訳(メタデータ) (2023-11-16T20:09:47Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Generalized Uncertainty of Deep Neural Networks: Taxonomy and
Applications [1.9671123873378717]
ディープニューラルネットワークの不確実性は、解釈可能性と透明性の感覚において重要であるだけでなく、パフォーマンスをさらに向上するためにも重要であることを示す。
我々は、ディープニューラルネットワークの不確実性の定義を、入力またはインプットラベルペアに関連する任意の数またはベクトルに一般化し、そのような不確かさをディープモデルから「マイニングに関する既存の方法」をカタログ化する。
論文 参考訳(メタデータ) (2023-02-02T22:02:33Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Holistic Adversarial Robustness of Deep Learning Models [91.34155889052786]
敵対的堅牢性は、安全性と信頼性を確保するために、機械学習モデルの最悪のケースパフォーマンスを研究する。
本稿では,深層学習モデルの対角的ロバスト性に関する研究課題の概要と研究手法の基礎原則について概説する。
論文 参考訳(メタデータ) (2022-02-15T05:30:27Z) - Optimism in the Face of Adversity: Understanding and Improving Deep
Learning through Adversarial Robustness [63.627760598441796]
深層学習における対角的強靭性の分野を詳細に検討する。
直感的な対向例と深層ニューラルネットワークの幾何学的関係を強調した。
セキュリティを超えた敵の堅牢性の主な応用について概説する。
論文 参考訳(メタデータ) (2020-10-19T16:03:46Z) - Knowledge-guided Deep Reinforcement Learning for Interactive
Recommendation [49.32287384774351]
インタラクティブレコメンデーションは、アイテムとユーザ間の動的インタラクションから学び、応答性と精度を達成することを目的としている。
本稿では,知識指導型深層強化学習を提案する。
論文 参考訳(メタデータ) (2020-04-17T05:26:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。