論文の概要: Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2408.13274v1
- Date: Tue, 20 Aug 2024 02:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 20:20:40.612392
- Title: Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks
- Title(参考訳): ロバスト画像分類:FGSMとPGD攻撃に対する防御戦略
- Authors: Hetvi Waghela, Jaydip Sen, Sneha Rakshit,
- Abstract要約: 敵対的攻撃は、画像分類におけるディープラーニングモデルの堅牢性に重大な脅威をもたらす。
本稿では,ニューラルネットワークのレジリエンスを高めるために,これらの攻撃に対する防御機構を探索し,洗練する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks, particularly the Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) pose significant threats to the robustness of deep learning models in image classification. This paper explores and refines defense mechanisms against these attacks to enhance the resilience of neural networks. We employ a combination of adversarial training and innovative preprocessing techniques, aiming to mitigate the impact of adversarial perturbations. Our methodology involves modifying input data before classification and investigating different model architectures and training strategies. Through rigorous evaluation of benchmark datasets, we demonstrate the effectiveness of our approach in defending against FGSM and PGD attacks. Our results show substantial improvements in model robustness compared to baseline methods, highlighting the potential of our defense strategies in real-world applications. This study contributes to the ongoing efforts to develop secure and reliable machine learning systems, offering practical insights and paving the way for future research in adversarial defense. By bridging theoretical advancements and practical implementation, we aim to enhance the trustworthiness of AI applications in safety-critical domains.
- Abstract(参考訳): 特にFGSM(Fast Gradient Sign Method)やPGD(Projected Gradient Descent)は、画像分類におけるディープラーニングモデルの堅牢性に重大な脅威をもたらす。
本稿では,ニューラルネットワークのレジリエンスを高めるために,これらの攻撃に対する防御機構を探索し,洗練する。
我々は,敵の摂動の影響を軽減するために,敵の訓練と革新的前処理技術を組み合わせている。
我々の手法は、分類の前に入力データを修正し、異なるモデルアーキテクチャとトレーニング戦略を調査することである。
ベンチマークデータセットの厳密な評価を通じて、FGSMおよびPGD攻撃に対する防御における我々のアプローチの有効性を実証する。
本研究は, モデルロバスト性をベースライン法と比較して大幅に向上させ, 実世界の応用における防衛戦略の可能性を強調した。
本研究は、安全で信頼性の高い機械学習システム開発への継続的な取り組みに寄与し、実用的な洞察を提供し、敵防衛における今後の研究の道を開く。
理論的進歩と実践的実装をブリッジすることで、安全クリティカルな領域におけるAIアプリケーションの信頼性を高めることを目指している。
関連論文リスト
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Unlearning Backdoor Attacks through Gradient-Based Model Pruning [10.801476967873173]
本研究では,その軽減を未学習課題として扱うことによって,バックドア攻撃に対抗する新しい手法を提案する。
このアプローチは単純さと有効性を提供し、データ可用性に制限のあるシナリオに適しています。
論文 参考訳(メタデータ) (2024-05-07T00:36:56Z) - Improving the Robustness of Object Detection and Classification AI models against Adversarial Patch Attacks [2.963101656293054]
我々は攻撃手法を解析し、堅牢な防御手法を提案する。
我々は,物体形状,テクスチャ,位置を利用する逆パッチ攻撃を用いて,モデル信頼度を20%以上下げることに成功した。
敵攻撃にも拘わらず,本手法はモデルレジリエンスを著しく向上させ,高精度かつ信頼性の高いローカライゼーションを実現している。
論文 参考訳(メタデータ) (2024-03-04T13:32:48Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Robust Adversarial Defense by Tensor Factorization [1.2954493726326113]
本研究では、入力データのテンソル化と低ランク分解とNNパラメータのテンソル化を統合し、敵防御を強化する。
提案手法は、最強の自爆攻撃を受けた場合でも、高い防御能力を示し、堅牢な精度を維持する。
論文 参考訳(メタデータ) (2023-09-03T04:51:44Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
ディープニューラルネットワークは、意図的に構築された敵の例に対して脆弱である。
ニューラルNLPモデルに対する敵対的単語置換攻撃を防御する様々な方法が提案されている。
論文 参考訳(メタデータ) (2021-08-29T08:11:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。