論文の概要: Lossy Medical Image Compression using Residual Learning-based Dual
Autoencoder Model
- arxiv url: http://arxiv.org/abs/2108.10579v1
- Date: Tue, 24 Aug 2021 08:38:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-25 18:48:47.182636
- Title: Lossy Medical Image Compression using Residual Learning-based Dual
Autoencoder Model
- Title(参考訳): 残差学習に基づくデュアルオートエンコーダモデルを用いた医用画像圧縮
- Authors: Dipti Mishra, Satish Kumar Singh, Rajat Kumar Singh
- Abstract要約: 本稿では,2段階のオートエンコーダをベースとした,マラリアRBC細胞イメージパッチの圧縮のための圧縮機・圧縮機フレームワークを提案する。
提案した残差ベースデュアルオートエンコーダネットワークは、元の画像の再構成に使用されるユニークな特徴を抽出するために訓練される。
このアルゴリズムは、JPEG-LS、JP2K-LM、CALIC、最近のニューラルネットワークアプローチよりも76%、78%、75%、および74%のビット節約率で大幅に改善されている。
- 参考スコア(独自算出の注目度): 12.762298148425794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose a two-stage autoencoder based
compressor-decompressor framework for compressing malaria RBC cell image
patches. We know that the medical images used for disease diagnosis are around
multiple gigabytes size, which is quite huge. The proposed residual-based dual
autoencoder network is trained to extract the unique features which are then
used to reconstruct the original image through the decompressor module. The two
latent space representations (first for the original image and second for the
residual image) are used to rebuild the final original image. Color-SSIM has
been exclusively used to check the quality of the chrominance part of the cell
images after decompression. The empirical results indicate that the proposed
work outperformed other neural network related compression technique for
medical images by approximately 35%, 10% and 5% in PSNR, Color SSIM and MS-SSIM
respectively. The algorithm exhibits a significant improvement in bit savings
of 76%, 78%, 75% & 74% over JPEG-LS, JP2K-LM, CALIC and recent neural network
approach respectively, making it a good compression-decompression technique.
- Abstract(参考訳): 本研究では,マラリアrbc細胞画像パッチを圧縮するための2段階オートエンコーダベースの圧縮機・デコンプレッサーフレームワークを提案する。
病気の診断に使用される医療画像は、数十ギガバイトほどの大きさで、非常に巨大です。
提案した残差ベースデュアルオートエンコーダネットワークは,デコンプレッサモジュールを通じて元のイメージを再構成するユニークな特徴を抽出するために訓練される。
2つの潜在空間表現(第1は原画像、第2は残留画像)は、最終原画像の再構築に使用される。
色-SSIMは、減圧後の細胞画像のクロミナンス部の品質チェックにのみ使用されている。
実験の結果,提案手法は,PSNR,Color SSIM,MS-SSIMにおいて,医用画像の他のニューラルネットワーク圧縮技術よりも約35%,10%,5%優れていた。
このアルゴリズムは、JPEG-LS、JP2K-LM、CALIC、最近のニューラルネットワークアプローチよりも76%、78%、75%、および74%のビット保存を大幅に改善し、圧縮圧縮技術として優れている。
関連論文リスト
- Recompression Based JPEG Tamper Detection and Localization Using Deep Neural Network Eliminating Compression Factor Dependency [2.8498944632323755]
本稿では,JPEG画像におけるrepression based forgeryの存在を検出することができる畳み込みニューラルネットワークに基づくディープラーニングアーキテクチャを提案する。
本研究では,リ圧縮機能に基づく画像操作領域のローカライズも目的とする。
論文 参考訳(メタデータ) (2024-07-03T09:19:35Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Inlicit Neural Representation (INR) ネットワークは、その柔軟な圧縮比のため、顕著な汎用性を示している。
周波数領域情報を含むコードブックをINRネットワークへの事前入力として導入する。
これにより、INRの表現力が向上し、異なる画像ブロックに対して特異な条件付けが提供される。
論文 参考訳(メタデータ) (2024-05-27T05:52:13Z) - Image Compression and Decompression Framework Based on Latent Diffusion
Model for Breast Mammography [0.0]
本研究では,潜在拡散モデル(LDM)を用いた医用画像の圧縮・圧縮のための新しい枠組みを提案する。
LDMは, 拡散確率モデル (DDPM) の進歩を表現し, 優れた画質が得られる可能性が示唆された。
医用画像データを用いた画像アップスケーリングにおけるLCMとTorchvisionの応用の可能性について検討した。
論文 参考訳(メタデータ) (2023-10-08T22:08:59Z) - CompaCT: Fractal-Based Heuristic Pixel Segmentation for Lossless Compression of High-Color DICOM Medical Images [0.0]
医用画像は、医師による正確な分析のために、ピクセル単位の12ビットの高色深度を必要とする。
フィルタリングによる画像の標準圧縮はよく知られているが、具体化されていない実装のため、医療領域ではまだ最適ではない。
本研究では,動的に拡張されたデータ処理のための画素濃度の空間的特徴とパターンをターゲットとした医用画像圧縮アルゴリズムCompaCTを提案する。
論文 参考訳(メタデータ) (2023-08-24T21:43:04Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
近年,学習画像圧縮(lic)法は大きな進歩を遂げている。
licメソッドは、画像圧縮に不可欠な画像構造とテクスチャコンポーネントを明示的に探索することができない。
原画像の構造とテクスチャに基づいて可視パッチをサンプリングするDA-Maskを提案する。
極めて低ビットレート圧縮のために, lic と lic のエンドツーエンドを統一する最初のフレームワークである, 単純で効果的なマスク付き圧縮モデル (MCM) を提案する。
論文 参考訳(メタデータ) (2023-06-27T15:36:22Z) - Are Visual Recognition Models Robust to Image Compression? [23.280147529096908]
画像圧縮が視覚認知タスクに与える影響を解析する。
我々は、0.1ビットから2ビット/ピクセル(bpp)までの幅広い圧縮レベルについて検討する。
これら3つのタスクすべてにおいて,強い圧縮を使用する場合,認識能力に大きな影響があることが判明した。
論文 参考訳(メタデータ) (2023-04-10T11:30:11Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
本稿では、損失のない画像圧縮とほぼロスレス画像圧縮の両面において、統合された強力な深い損失+残差(DLPR)符号化フレームワークを提案する。
VAEのアプローチにおける連立損失と残留圧縮の問題を解く。
ほぼロスレスモードでは、元の残差を量子化し、与えられた$ell_infty$エラー境界を満たす。
論文 参考訳(メタデータ) (2022-09-11T12:11:56Z) - Crowd Counting on Heavily Compressed Images with Curriculum Pre-Training [90.76576712433595]
ディープニューラルネットワークによって処理された画像に損失圧縮を適用することで、大幅な精度低下につながる可能性がある。
カリキュラム学習のパラダイムに着想を得て,圧縮画像の群集カウントのためのカリキュラム事前学習(CPT)と呼ばれる新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2022-08-15T08:43:21Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
我々は、ロスレス画像圧縮システムを構築するために、強力なロスレス画像圧縮アルゴリズムであるBPGを利用する。
我々は,BPG再構成を条件とした畳み込みニューラルネットワークに基づく確率モデルを用いて,残差分布をモデル化する。
そして、この画像は、BPGが生成したビットストリームと学習した残留コーダの連結を用いて保存される。
論文 参考訳(メタデータ) (2020-03-23T11:21:52Z) - Discernible Image Compression [124.08063151879173]
本稿では、外観と知覚の整合性の両方を追求し、圧縮画像を作成することを目的とする。
エンコーダ・デコーダ・フレームワークに基づいて,事前学習したCNNを用いて,オリジナル画像と圧縮画像の特徴を抽出する。
ベンチマーク実験により,提案手法を用いて圧縮した画像は,その後の視覚認識・検出モデルでもよく認識できることが示された。
論文 参考訳(メタデータ) (2020-02-17T07:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。