論文の概要: Recompression Based JPEG Tamper Detection and Localization Using Deep Neural Network Eliminating Compression Factor Dependency
- arxiv url: http://arxiv.org/abs/2407.02942v1
- Date: Wed, 3 Jul 2024 09:19:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 14:55:24.571321
- Title: Recompression Based JPEG Tamper Detection and Localization Using Deep Neural Network Eliminating Compression Factor Dependency
- Title(参考訳): 圧縮係数依存性を除去したディープニューラルネットワークを用いた圧縮に基づくJPEGタンパー検出と位置決め
- Authors: Jamimamul Bakas, Praneta Rawat, Kalyan Kokkalla, Ruchira Naskar,
- Abstract要約: 本稿では,JPEG画像におけるrepression based forgeryの存在を検出することができる畳み込みニューラルネットワークに基づくディープラーニングアーキテクチャを提案する。
本研究では,リ圧縮機能に基づく画像操作領域のローカライズも目的とする。
- 参考スコア(独自算出の注目度): 2.8498944632323755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we deal with the problem of re compression based image forgery detection, where some regions of an image are modified illegitimately, hence giving rise to presence of dual compression characteristics within a single image. There have been some significant researches in this direction, in the last decade. However, almost all existing techniques fail to detect this form of forgery, when the first compression factor is greater than the second. We address this problem in re compression based forgery detection, here Recently, Machine Learning techniques have started gaining a lot of importance in the domain of digital image forensics. In this work, we propose a Convolution Neural Network based deep learning architecture, which is capable of detecting the presence of re compression based forgery in JPEG images. The proposed architecture works equally efficiently, even in cases where the first compression ratio is greater than the second. In this work, we also aim to localize the regions of image manipulation based on re compression features, using the trained neural network. Our experimental results prove that the proposed method outperforms the state of the art, with respect to forgery detection and localization accuracy.
- Abstract(参考訳): 本研究では,再圧縮に基づく画像偽造検出の問題に対処し,画像の一部の領域が不正に修正され,単一の画像内に二重圧縮特性が生じる。
この方向には過去10年間、いくつかの重要な研究がなされている。
しかし、ほとんどの既存の手法は、第1の圧縮係数が第2の圧縮係数よりも大きい場合、この形式の偽造を検出できない。
近年,デジタル画像鑑定の分野において,機械学習技術の重要性が高まっている。
本研究では,JPEG画像におけるrepression based forgeryの存在を検出することができる畳み込みニューラルネットワークに基づくディープラーニングアーキテクチャを提案する。
提案アーキテクチャは,第1圧縮比が第2圧縮比よりも大きい場合であっても,等しく効率的に機能する。
本研究では,リ圧縮機能に基づく画像操作領域のローカライズも目的とする。
提案手法は, 偽造検出と局所化精度に関して, 最先端の手法よりも優れていることを示す。
関連論文リスト
- Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
敵対的攻撃は容易に画像分類システムを破壊し、DNNベースの認識タスクの脆弱性を明らかにする。
我々は、学習した画像圧縮機を前処理モジュールとして利用する画像分類モデルをターゲットにした新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-06T03:03:28Z) - A Deep Learning-based Compression and Classification Technique for Whole
Slide Histopathology Images [0.31498833540989407]
我々は、ニューラルネットワークのアンサンブルを構築し、圧縮オートエンコーダを教師付き方式で、入力されたヒストロジー画像のより密度が高くより意味のある表現を維持することができる。
転送学習に基づく分類器を用いて圧縮画像を検証し、有望な精度と分類性能を示すことを示す。
論文 参考訳(メタデータ) (2023-05-11T22:20:05Z) - Convolutional Neural Network (CNN) to reduce construction loss in JPEG
compression caused by Discrete Fourier Transform (DFT) [0.0]
畳み込みニューラルネットワーク(CNN)は他の多くのディープニューラルネットワークよりも注目されている。
本研究では,オートエンコーダを用いた効率的な画像圧縮手法を提案する。
論文 参考訳(メタデータ) (2022-08-26T12:46:16Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
本稿では,最近の画像圧縮モデルの速度歪みトレードオフをさらに改善する検索自由化フレームワークについて述べる。
提案手法により,Bjontegaard-Deltaレート(BD-rate)を最大10%向上させることができる。
論文 参考訳(メタデータ) (2022-04-26T01:35:02Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Lossy Medical Image Compression using Residual Learning-based Dual
Autoencoder Model [12.762298148425794]
本稿では,2段階のオートエンコーダをベースとした,マラリアRBC細胞イメージパッチの圧縮のための圧縮機・圧縮機フレームワークを提案する。
提案した残差ベースデュアルオートエンコーダネットワークは、元の画像の再構成に使用されるユニークな特徴を抽出するために訓練される。
このアルゴリズムは、JPEG-LS、JP2K-LM、CALIC、最近のニューラルネットワークアプローチよりも76%、78%、75%、および74%のビット節約率で大幅に改善されている。
論文 参考訳(メタデータ) (2021-08-24T08:38:58Z) - Metric Learning for Anti-Compression Facial Forgery Detection [32.33501564446107]
新規な抗圧縮顔面フォージェリー検出フレームワークを提案する。
オリジナル版と圧縮版の両方を使って、圧縮に敏感な埋め込み機能空間を学習する。
論文 参考訳(メタデータ) (2021-03-15T14:11:14Z) - Image Splicing Detection, Localization and Attribution via JPEG Primary
Quantization Matrix Estimation and Clustering [49.75353434786065]
画像領域の異なる2つのJPEGアーチファクトの不整合の検出は、しばしば局所的な画像操作を検出するために使用される。
ドナー画像の異なる領域を識別するエンド・ツー・エンドシステムを提案する。
論文 参考訳(メタデータ) (2021-02-02T11:21:49Z) - Discernible Image Compression [124.08063151879173]
本稿では、外観と知覚の整合性の両方を追求し、圧縮画像を作成することを目的とする。
エンコーダ・デコーダ・フレームワークに基づいて,事前学習したCNNを用いて,オリジナル画像と圧縮画像の特徴を抽出する。
ベンチマーク実験により,提案手法を用いて圧縮した画像は,その後の視覚認識・検出モデルでもよく認識できることが示された。
論文 参考訳(メタデータ) (2020-02-17T07:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。