Full-Velocity Radar Returns by Radar-Camera Fusion
- URL: http://arxiv.org/abs/2108.10637v1
- Date: Tue, 24 Aug 2021 10:42:16 GMT
- Title: Full-Velocity Radar Returns by Radar-Camera Fusion
- Authors: Yunfei Long, Daniel Morris, Xiaoming Liu, Marcos Castro, Punarjay
Chakravarty, Praveen Narayanan
- Abstract summary: We present a solution for the point-wise, full-velocity estimate of Doppler returns using the corresponding optical flow from camera images.
We also address the association problem between radar returns and camera images with a neural network that is trained to estimate radar-camera correspondences.
- Score: 20.741391191916197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A distinctive feature of Doppler radar is the measurement of velocity in the
radial direction for radar points. However, the missing tangential velocity
component hampers object velocity estimation as well as temporal integration of
radar sweeps in dynamic scenes. Recognizing that fusing camera with radar
provides complementary information to radar, in this paper we present a
closed-form solution for the point-wise, full-velocity estimate of Doppler
returns using the corresponding optical flow from camera images. Additionally,
we address the association problem between radar returns and camera images with
a neural network that is trained to estimate radar-camera correspondences.
Experimental results on the nuScenes dataset verify the validity of the method
and show significant improvements over the state-of-the-art in velocity
estimation and accumulation of radar points.
Related papers
- Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - Bootstrapping Autonomous Driving Radars with Self-Supervised Learning [13.13679517730015]
Training radar models is hindered by the cost and difficulty of annotating large-scale radar data.
We propose a self-supervised learning framework to leverage the large amount of unlabeled radar data to pre-train radar-only embeddings for self-driving perception tasks.
When used for downstream object detection, we demonstrate that the proposed self-supervision framework can improve the accuracy of state-of-the-art supervised baselines by $5.8%$ in mAP.
arXiv Detail & Related papers (2023-12-07T18:38:39Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
Radar-centric data sets do not get a lot of attention in the development of deep learning techniques for radar perception.
We propose a transformers-based model, named RadarFormer, that utilizes state-of-the-art developments in vision deep learning.
Our model also introduces a channel-chirp-time merging module that reduces the size and complexity of our models by more than 10 times without compromising accuracy.
arXiv Detail & Related papers (2023-04-17T17:07:35Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
We propose the use of Complex-Valued Convolutional Neural Networks (CVCNNs) to address the issue of mutual interference between radar sensors.
CVCNNs increase data efficiency, speeds up network training and substantially improves the conservation of phase information during interference removal.
arXiv Detail & Related papers (2021-04-29T10:06:29Z) - Radar Artifact Labeling Framework (RALF): Method for Plausible Radar
Detections in Datasets [2.5899040911480187]
We propose a cross sensor Radar Artifact Labeling Framework (RALF) for labeling sparse radar point clouds.
RALF provides plausibility labels for radar raw detections, distinguishing between artifacts and targets.
We validate the results by evaluating error metrics on semi-manually labeled ground truth dataset of $3.28cdot106$ points.
arXiv Detail & Related papers (2020-12-03T15:11:31Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.