論文の概要: Understanding the Basis of Graph Convolutional Neural Networks via an
Intuitive Matched Filtering Approach
- arxiv url: http://arxiv.org/abs/2108.10751v1
- Date: Mon, 23 Aug 2021 12:41:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-26 01:12:35.594527
- Title: Understanding the Basis of Graph Convolutional Neural Networks via an
Intuitive Matched Filtering Approach
- Title(参考訳): 直感的マッチングフィルタによるグラフ畳み込みニューラルネットワークの基礎理解
- Authors: Ljubisa Stankovic and Danilo Mandic
- Abstract要約: グラフ畳み込みニューラルネットワーク(GCNN)は不規則領域のデータ処理において好まれるモデルとなっている。
これらの畳み込み層は、選択したパターンと一致した入力データのフィルタリングを効果的に行うことを示す。
数値的な例は、GCNN操作の様々なステップをガイドし、視覚的にも数値的にも学習する。
- 参考スコア(独自算出の注目度): 7.826806223782053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Convolutional Neural Networks (GCNN) are becoming a preferred model for
data processing on irregular domains, yet their analysis and principles of
operation are rarely examined due to the black box nature of NNs. To this end,
we revisit the operation of GCNNs and show that their convolution layers
effectively perform matched filtering of input data with the chosen patterns
(features). This allows us to provide a unifying account of GCNNs through a
matched filter perspective, whereby the nonlinear ReLU and max-pooling layers
are also discussed within the matched filtering framework. This is followed by
a step-by-step guide on information propagation and learning in GCNNs. It is
also shown that standard CNNs and fully connected NNs can be obtained as a
special case of GCNNs. A carefully chosen numerical example guides the reader
through the various steps of GCNN operation and learning both visually and
numerically.
- Abstract(参考訳): グラフ畳み込みニューラルネットワーク(GCNN)は、不規則領域のデータ処理において好まれるモデルとなっているが、NNのブラックボックスの性質から、その解析と動作原理はめったに検討されていない。
この目的のために、GCNNの動作を再検討し、その畳み込み層が、選択したパターン(機能)と入力データのマッチングフィルタリングを効果的に実行することを示す。
これにより、整合フィルタの観点からGCNNの統一的な説明を提供することができ、非線型ReLU層と最大プール層も整合フィルタフレームワーク内で議論される。
次に、GCNNにおける情報伝達と学習に関するステップバイステップガイドが続く。
また、標準cnnと完全連結nnをgcnnの特別な場合として得ることも示されている。
慎重に選択された数値例は、GCNN操作の様々なステップをガイドし、視覚的にも数値的にも学習する。
関連論文リスト
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
蒸留によりCNNとGNNを統一する新しいCNN2GNNフレームワークを提案する。
Mini-ImageNetにおける蒸留ブースターの2層GNNの性能は、ResNet152のような数十層を含むCNNよりもはるかに高い。
論文 参考訳(メタデータ) (2024-04-23T08:19:08Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
本稿では,グラフニューラルネットワーク (GNN) と多様体ニューラルネットワーク (MNN) の関係について検討する。
これらのグラフ上の畳み込みフィルタとニューラルネットワークが連続多様体上の畳み込みフィルタとニューラルネットワークに収束することを示す。
論文 参考訳(メタデータ) (2023-05-29T08:27:17Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
本稿では,従来のGCNフィルタと幾何散乱変換を用いて定義された帯域通過フィルタを組み合わせたハイブリッドグラフニューラルネットワーク(GNN)フレームワークを提案する。
理論的には, グラフからの構造情報を活用するために散乱フィルタの相補的な利点が確立され, 実験では様々な学習課題における手法の利点が示された。
論文 参考訳(メタデータ) (2022-01-22T00:47:41Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z) - Variational models for signal processing with Graph Neural Networks [3.5939555573102853]
本稿では,ニューラルネットワークを用いた点雲の信号処理について述べる。
本研究では,このようなグラフニューラルネットワークの変分モデルを用いて,教師なし学習のためのグラフ上の信号を処理する方法を検討する。
論文 参考訳(メタデータ) (2021-03-30T13:31:11Z) - Framework for Designing Filters of Spectral Graph Convolutional Neural
Networks in the Context of Regularization Theory [1.0152838128195467]
グラフ畳み込みニューラルネットワーク(GCNN)はグラフ学習に広く利用されている。
グラフ上の滑らかさ関数はグラフラプラシアンの言葉で定義できる。
本稿では,グラフラプラシアンの正規化特性について検討し,スペクトルGCNNにおける正規化フィルタ設計のための一般化されたフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-29T06:19:08Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
グラフニューラルネットワーク(GNN)は、グラフでサポートされている信号のための情報処理アーキテクチャである。
これらは、個々の層がグラフ畳み込みフィルタのバンクを含む畳み込みニューラルネットワーク(CNN)の一般化である。
論文 参考訳(メタデータ) (2020-08-04T18:57:36Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。