Low dephasing and robust micromagnet designs for silicon spin qubits
- URL: http://arxiv.org/abs/2108.10769v1
- Date: Tue, 24 Aug 2021 14:27:57 GMT
- Title: Low dephasing and robust micromagnet designs for silicon spin qubits
- Authors: N. I. Dumoulin Stuyck, F. A. Mohiyaddin, R. Li, M. Heyns, B.
Govoreanu, and I. P. Radu
- Abstract summary: We describe a magnet design that minimizes qubit dephasing, while allowing for fast qubit control and addressability.
The micromagnet-induced dephasing rates with this design are up to 3-orders of magnitude lower than state-of-the-art implementations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using micromagnets to enable electron spin manipulation in silicon qubits has
emerged as a very popular method, enabling single-qubit gate fidelities larger
than 99:9%. However, these micromagnets also apply stray magnetic field
gradients onto the qubits, making the spin states susceptible to electric field
noise and limiting their coherence times. We describe here a magnet design that
minimizes qubit dephasing, while allowing for fast qubit control and
addressability. Specifically, we design and optimize magnet dimensions and
position relative to the quantum dots, minimizing dephasing from magnetic field
gradients. The micromagnet-induced dephasing rates with this design are up to
3-orders of magnitude lower than state-of-the-art implementations, allowing for
long coherence times. This design is robust against fabrication errors, and can
be combined with a wide variety of silicon qubit device geometries, thereby
allowing exploration of coherence limiting factors and novel upscaling
approaches.
Related papers
- Diamagnetic micro-chip traps for levitated nanoparticle entanglement experiments [0.0]
Quantum Gravity Mediated Entanglement (QGEM) protocol offers a novel method to probe the quantumness of gravitational interactions at non-relativistic scales.
We propose using magnetic traps based on micro-fabricated wires to trap nanoparticles for interferometric entanglement experiments.
arXiv Detail & Related papers (2024-11-04T17:48:32Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Modular nanomagnet design for spin qubits confined in a linear chain [0.0]
We present a design aimed at driving spin qubits arranged in a linear chain.
Nanomagnets are placed laterally to one side of the qubit chain, one nanomagnet per two qubits.
The longitudinal and stray field components serve as addressability and driving fields.
arXiv Detail & Related papers (2022-12-22T11:17:32Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Quantum Control of Spin Qubits Using Nanomagnets [0.09423257767158633]
We propose a new technique for addressing spin qubits using voltage-control of nanoscale magnetism.
We show that by tuning the frequency of the nanomagnet's electric field drive to the Larmor frequency of the spins confined to a nanoscale volume, single-qubit quantum gates with fidelities approaching those for fault-tolerant quantum computing can be implemented.
arXiv Detail & Related papers (2022-03-31T00:01:02Z) - Flopping-mode electric dipole spin resonance in phosphorus donor qubits
in silicon [0.0]
Single spin qubits based on phosphorus donors in silicon are a promising candidate for a large-scale quantum computer.
We present a proposal for a flopping-mode electric dipole spin resonance qubit based on the combined electron and nuclear spin states of a double phosphorus donor quantum dot.
arXiv Detail & Related papers (2021-05-06T18:11:00Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.