Fourth-order quantum master equations reveal that spin-phonon decoherence undercuts long magnetization relaxation times in single-molecule magnets
- URL: http://arxiv.org/abs/2507.20716v1
- Date: Mon, 28 Jul 2025 11:13:33 GMT
- Title: Fourth-order quantum master equations reveal that spin-phonon decoherence undercuts long magnetization relaxation times in single-molecule magnets
- Authors: Alessandro Lunghi,
- Abstract summary: We numerically implement fourth-order quantum master equations to account for coherence terms and describe the full effect of up to two-phonon processes on spin dynamics.<n>We show that while strong axial magnetic anisotropy ensures slow magnetic relaxation approaching seconds at 77 K, the superposition of Kramers doublets is coherent for less than 10 ns due to a novel two-phonon pure dephasing mechanism.
- Score: 55.2480439325792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spin-phonon interaction is known to drive magnetic relaxation in solid-state systems, but little evidence is available on how it affects coherence time. Here we extend fourth-order quantum master equations to account for coherence terms and describe the full effect of up to two-phonon processes on spin dynamics. We numerically implement this method fully ab initio for a single-molecule magnet with large magnetization blocking temperature and show that while strong axial magnetic anisotropy ensures slow magnetic relaxation approaching seconds at 77 K, the superposition of Kramers doublets is coherent for less than 10 ns due to a novel two-phonon pure dephasing mechanism.
Related papers
- Unconventional Relaxation Dynamics in Co_8Zn_7Mn_5 and Co_8Zn_8Mn_4: Evidence of Inertial Effects [0.5399800035598186]
We study the relaxation dynamics for Beta Mn type Co_8Zn_7Mn_5 and Co_8Zn_8Mn_4 across a frequency range of 1 kHz to 10 kHz.<n>An inertial component is needed to successfully describe the dynamics, suggesting the presence of unconventional relaxation behavior.
arXiv Detail & Related papers (2025-04-28T13:55:27Z) - Time Crystals from single-molecule magnet arrays [0.0]
Time crystals are a unique non-equilibrium quantum phenomenon with promising applications in current quantum technologies.
Here we theoretically predict discrete time-crystals in a periodically driven molecular magnet array.
Surprisingly, we find that the time-crystal response frequency correlates with the energy levels of the individual magnets.
arXiv Detail & Related papers (2024-09-17T01:21:14Z) - Quantum tunneling of the magnetization in systems with anisotropic 4f
ion pairs: Rates from low temperature zero field relaxation [0.0]
Quantum tunneling of the magnetisation is imprinted in the magnetisation lifetimes at sub-Kelvin temperatures.
A Hamiltonian that includes quantum tunneling of the magnetisation predicts the lifting of the zero field ground state degeneracy.
arXiv Detail & Related papers (2024-03-12T18:14:12Z) - Observation of anisotropy-independent magnetization dynamics in spatially disordered Heisenberg spin systems [0.0]
We experimentally observe robust features in the magnetization relaxation dynamics of disordered Heisenberg XX-, XXZ- and Ising Hamiltonians.
In numerical simulations of small systems, we show that these pairs of spins constitute approximate local integrals of motion.
arXiv Detail & Related papers (2022-09-16T17:44:49Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z) - Coupling a mobile hole to an antiferromagnetic spin background:
Transient dynamics of a magnetic polaron [0.0]
In this work, we use a cold-atom quantum simulator to directly observe the formation dynamics and subsequent spreading of individual magnetic polarons.
Measuring the density- and spin-resolved evolution of a single hole in a 2D Hubbard insulator with short-range antiferromagnetic correlations reveals fast initial delocalization and a dressing of the spin background.
Our work enables the study of out-of-equilibrium emergent phenomena in the Fermi-Hubbard model, one dopant at a time.
arXiv Detail & Related papers (2020-06-11T17:59:54Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.