Diamagnetic micro-chip traps for levitated nanoparticle entanglement experiments
- URL: http://arxiv.org/abs/2411.02325v1
- Date: Mon, 04 Nov 2024 17:48:32 GMT
- Title: Diamagnetic micro-chip traps for levitated nanoparticle entanglement experiments
- Authors: Shafaq Gulzar Elahi, Martine Schut, Andrew Dana, Alexey Grinin, Sougato Bose, Anupam Mazumdar, Andrew Geraci,
- Abstract summary: Quantum Gravity Mediated Entanglement (QGEM) protocol offers a novel method to probe the quantumness of gravitational interactions at non-relativistic scales.
We propose using magnetic traps based on micro-fabricated wires to trap nanoparticles for interferometric entanglement experiments.
- Score: 0.0
- License:
- Abstract: The Quantum Gravity Mediated Entanglement (QGEM) protocol offers a novel method to probe the quantumness of gravitational interactions at non-relativistic scales. This protocol leverages the Stern-Gerlach effect to create $\mathcal{O}(\sim \mu m)$ spatial superpositions of two nanodiamonds (mass $\sim 10^{-15}$ kg) with NV spins, which are then allowed to interact and become entangled solely through the gravitational interaction. Since electromagnetic interactions such as Casimir-Polder and dipole-dipole interactions dominate at this scale, screening them to ensure the masses interact exclusively via gravity is crucial. In this paper, we propose using magnetic traps based on micro-fabricated wires, which provide strong gradients with relatively modest magnetic fields to trap nanoparticles for interferometric entanglement experiments. The design consists of a small trap to cool the center-of-mass motion of the nanodiamonds and a long trap with a weak direction suitable for creating macroscopic superpositions. In contrast to permanent-magnet-based long traps, the micro-fabricated wire-based approach allows fast switching of the magnetic trapping and state manipulation potentials and permits integrated superconducting shielding, which can screen both electrostatic and magnetic interactions between nanodiamonds in a gravitational entanglement experiment. The setup also provides a possible platform for other tests of quantum coherence in macroscopic systems and searches for novel short-range forces.
Related papers
- Spin Squeezing with Magnetic Dipoles [37.93140485169168]
Entanglement can improve the measurement precision of quantum sensors beyond the shot noise limit.
We take advantage of the magnetic dipole-dipole interaction native to most neutral atoms to realize spin-squeezed states.
We achieve 7.1 dB of metrologically useful squeezing using the finite-range spin exchange interactions in an erbium quantum gas microscope.
arXiv Detail & Related papers (2024-11-11T18:42:13Z) - Entanglement of Magnetically Levitated Massive Schr\"odinger Cat States
by Induced Dipole Interaction [0.0]
We provide entanglement-based protocols to test the magnetically induced dipole-dipole interaction and the Casimir-Polder potential between the two nano-crystals.
We show that it is possible to close the SG interferometer in position and momentum with a modest gradient in the magnetic field.
arXiv Detail & Related papers (2023-04-28T05:54:33Z) - Enhanced tripartite interactions in spin-magnon-mechanical hybrid
systems [0.0]
We predict a tripartite coupling mechanism in a hybrid setup comprising a single NV center and a micromagnet.
We propose to realize direct and strong tripartite interactions among single NV spins, magnons and phonons via modulating the relative motion between the NV center and the micromagnet.
arXiv Detail & Related papers (2023-01-25T06:31:27Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Superconducting microsphere magnetically levitated in an anharmonic
potential with integrated magnetic readout [0.0]
We levitate a 700ng $sim 1017$amu superconducting microsphere in a magnetic chip trap.
We measure the particle's center-of-mass motion using a DC-SQUID magnetometer.
We characterize motional-amplitude-dependent frequency shifts, which arise from trap anharmonicities.
arXiv Detail & Related papers (2022-10-24T17:59:56Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Long range magnetic dipole-dipole interaction mediated by a
superconductor [0.0]
Quantum computation and simulation requires strong coherent coupling between qubits, which may be spatially separated.
Here we theoretically investigate a method for achieving such coupling, based on superconducting nano-structures designed to channel the magnetic flux created by the qubits.
We show that such structures could channel the magnetic flux, enhancing the dipole-dipole interaction between spin qubits and changing its scaling with distance, thus potentially paving the way for controllably engineering an interacting spin system.
arXiv Detail & Related papers (2021-07-11T21:16:29Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.