PULSEE: A software for the quantum simulation of an extensive set of
magnetic resonance observables
- URL: http://arxiv.org/abs/2108.11415v2
- Date: Tue, 20 Sep 2022 01:06:26 GMT
- Title: PULSEE: A software for the quantum simulation of an extensive set of
magnetic resonance observables
- Authors: Davide Candoli, Ilija K. Nikolov, Lucas Z. Brito, Stephen Car, Samuele
Sanna, Vesna F. Mitrovi\'c
- Abstract summary: The package introduced here enables the simulation of both standard NMR spectroscopic observables and the time-evolution of an interacting single-spin system.
The main purpose of this software is to facilitate in the development of much needed novel NMR-based probes of emergent quantum orders.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an open-source software for the simulation of observables in
magnetic resonance experiments, including nuclear magnetic/quadrupole resonance
NMR/NQR and electron spin resonance (ESR), developed to assist experimental
research in the design of new strategies for the investigation of fundamental
quantum properties of materials, as inspired by magnetic resonance protocols
that emerged in the context of quantum information science (QIS). The package
introduced here enables the simulation of both standard NMR spectroscopic
observables and the time-evolution of an interacting single-spin system subject
to complex pulse sequences, i.e. quantum gates. The main purpose of this
software is to facilitate in the development of much needed novel NMR-based
probes of emergent quantum orders, which can be elusive to standard
experimental probes. The software is based on a quantum mechanical description
of nuclear spin dynamics in NMR/NQR experiments and has been widely tested on
available theoretical and experimental results. Moreover, the structure of the
software allows for basic experiments to easily be generalized to more
sophisticated ones, as it includes all the libraries required for the numerical
simulation of generic spin systems. In order to make the program easily
accessible to a large user base, we developed a user-friendly graphical
interface, Jupyter notebooks, and fully-detailed documentation. Lastly, we
portray several examples of the execution of the code that illustrate the
potential of a novel NMR paradigm, inspired by QIS, for efficient investigation
of emergent phases in strongly correlated materials.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Towards quantum utility for NMR quantum simulation on a NISQ computer [0.0]
We investigate the application of noisy intermediate-scale quantum devices for simulating nuclear magnetic resonance (NMR) experiments.
We show the results of simulations of proton NMR spectra on relevant molecules with up to 11 spins, and up to a total of 47 atoms, and compare them with real NMR experiments.
Despite current limitations, we show that a similar approach will eventually lead to a case of quantum utility.
arXiv Detail & Related papers (2024-04-26T17:22:24Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Programmable Simulations of Molecules and Materials with Reconfigurable
Quantum Processors [0.3320294284424914]
We introduce a simulation framework for strongly correlated quantum systems that can be represented by model spin Hamiltonians.
Our approach leverages reconfigurable qubit architectures to programmably simulate real-time dynamics.
We show how this method can be used to compute key properties of a polynuclear transition-metal catalyst and 2D magnetic materials.
arXiv Detail & Related papers (2023-12-04T19:00:01Z) - Quantum algorithms for charged particle track reconstruction in the LUXE
experiment [0.0]
The LUXE experiment is a new experiment in planning in Hamburg, which will study Quantum Electrodynamics at the strong-field frontier.
This paper investigates the potential future use of gate-based quantum computers for pattern recognition in track reconstruction.
arXiv Detail & Related papers (2023-04-04T10:40:11Z) - Optically detected magnetic resonance with an open source platform [0.0]
Localized electronic spins in solid-state environments form versatile platforms for quantum sensing, metrology and quantum information processing.
With optically detected magnetic resonance (ODMR), it is possible to prepare and readout highly coherent spin systems.
This article aims to steepen the learning curve of newcomers in ODMR from a variety of scientific backgrounds.
arXiv Detail & Related papers (2022-04-29T18:09:18Z) - Digital quantum simulation of NMR experiments [0.0]
We demonstrate the first quantum simulation of an NMR spectrum, computing the zero-field spectrum of the methyl group of acetonitrile using four qubits of a trapped-ion quantum computer.
We show how the intrinsic decoherence of NMR systems may enable the zero-field simulation of classically hard molecules on relatively near-term quantum hardware.
arXiv Detail & Related papers (2021-09-27T18:36:33Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - QuaSiMo: A Composable Library to Program Hybrid Workflows for Quantum
Simulation [48.341084094844746]
We present a composable design scheme for the development of hybrid quantum/classical algorithms and for applications of quantum simulation.
We implement our design scheme using the hardware-agnostic programming language QCOR into the QuaSiMo library.
arXiv Detail & Related papers (2021-05-17T16:17:57Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.