Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation
- URL: http://arxiv.org/abs/2404.07034v1
- Date: Wed, 10 Apr 2024 14:27:07 GMT
- Title: Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation
- Authors: Sorana Catrina, Alexandra Băicoianu,
- Abstract summary: This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ever since the discussions about a possible quantum computer arised, quantum simulations have been at the forefront of possible utilities and the task of quantum simulations is one that promises quantum advantage. In recent years, simulations of large molecules through VQE or dynamics of many-body spin Hamiltonians may be possible, and even able to achieve useful results with the use of error mitigation techniques. Simulating smaller models is also important, and currently, in the NISQ (Noisy intermediate-scale quantum) era, it is easier and less prone to errors. This current study encompasses the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation. Specifically, this study presents the theoretical background needed for such implementation and highlights the main steps of development. Building on classic approaches of quantum tunneling simulations, this study improves the result of such simulations by employing error mitigation techniques (ZNE and REM) and uses them in conjunction with multiprogramming of the quantum chip for solving the hardware under-utilization problem that arises in such contexts. Moreover, we highlight the need for hardware-aware circuit implementations and discuss these considerations in detail to give an end-to-end workflow overview of quantum simulations.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Expanding Hardware-Efficiently Manipulable Hilbert Space via Hamiltonian
Embedding [9.219297088819634]
Many promising quantum applications depend on the efficient quantum simulation of an exponentially large sparse Hamiltonian.
In this paper, we propose a technique named Hamiltonian embedding.
This technique simulates a desired sparse Hamiltonian by embedding it into the evolution of a larger and more structured quantum system.
arXiv Detail & Related papers (2024-01-16T18:19:29Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
We propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer.
Our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits.
In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation.
arXiv Detail & Related papers (2023-12-03T13:56:41Z) - Quantum Simulations for Strong-Field QED [0.0]
We perform quantum simulations of strong-field QED (SFQED) in $3+1$ dimensions.
The interactions relevant for Breit-Wheeler pair-production are transformed into a quantum circuit.
Quantum simulations of a "null double slit" experiment are found to agree well with classical simulations.
arXiv Detail & Related papers (2023-11-30T03:05:26Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy
Quantum Computers [0.0]
We show that quantum dissipative dynamics can be simulated efficiently across coherent-to-incoherent regimes.
This work provides a new direction for quantum advantage in the NISQ era.
arXiv Detail & Related papers (2021-06-24T10:37:37Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Stochastic Quantum Circuit Simulation Using Decision Diagrams [3.9006434061597877]
A substantial amount of quantum algorithms research still relies on simulating quantum circuits on classical hardware.
We propose to use decision diagrams, as well as concurrent executions, to substantially reduce resource-requirements.
Backed up by rigorous theory, empirical studies show that this approach allows for a substantially faster and much more scalable simulation for certain quantum circuits.
arXiv Detail & Related papers (2020-12-10T12:10:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.