Exploring Implicit Visual Misunderstandings in Multimodal Large Language Models through Attention Analysis
- URL: http://arxiv.org/abs/2505.10541v2
- Date: Fri, 23 May 2025 14:26:54 GMT
- Title: Exploring Implicit Visual Misunderstandings in Multimodal Large Language Models through Attention Analysis
- Authors: Pengfei Wang, Guohai Xu, Weinong Wang, Junjie Yang, Jie Lou, Yunhua Xue,
- Abstract summary: We define implicit visual misunderstanding (IVM), where MLLMs provide correct answers without fully comprehending the visual input.<n>We introduce a scale-agnostic metric, textitattention accuracy, and a novel benchmark for quantifying IVMs.<n>We extend our approach to finer granularities and demonstrate its effectiveness in unimodal scenarios.
- Score: 21.869968563545736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements have enhanced the capability of Multimodal Large Language Models (MLLMs) to comprehend multi-image information. However, existing benchmarks primarily evaluate answer correctness, overlooking whether models genuinely comprehend the visual input. To address this, we define implicit visual misunderstanding (IVM), where MLLMs provide correct answers without fully comprehending the visual input. Through our analysis, we decouple the visual and textual modalities within the causal attention module, revealing that attention distribution increasingly converges on the image associated with the correct answer as the network layers deepen. This insight leads to the introduction of a scale-agnostic metric, \textit{attention accuracy}, and a novel benchmark for quantifying IVMs. Attention accuracy directly evaluates the model's visual understanding via internal mechanisms, remaining robust to positional biases for more reliable assessments. Furthermore, we extend our approach to finer granularities and demonstrate its effectiveness in unimodal scenarios, underscoring its versatility and generalizability.
Related papers
- Look-Back: Implicit Visual Re-focusing in MLLM Reasoning [15.478700750705643]
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in multimodal reasoning.<n>Current methods typically address this by explicitly injecting visual information to guide the reasoning process.<n>We introduce Look-Back, an implicit approach designed to guide MLLMs to look back" at visual information in a self-directed manner during reasoning.
arXiv Detail & Related papers (2025-07-02T14:59:35Z) - SECOND: Mitigating Perceptual Hallucination in Vision-Language Models via Selective and Contrastive Decoding [5.976839106353883]
SECOND: Selective and Contrastive Decoding is a novel approach that enables Vision-Language Models to leverage multi-scale visual information with an object-centric manner.<n> SECOND significantly reduces perceptual hallucinations and outperforms a wide range of benchmarks.
arXiv Detail & Related papers (2025-06-10T02:55:38Z) - Aligning Attention Distribution to Information Flow for Hallucination Mitigation in Large Vision-Language Models [11.385588803559733]
We enhance the model's visual understanding by leveraging the core information embedded in semantic representations.<n>We evaluate our method on three image captioning benchmarks using five different LVLMs, demonstrating its effectiveness in significantly reducing hallucinations.
arXiv Detail & Related papers (2025-05-20T12:10:13Z) - Looking Beyond Language Priors: Enhancing Visual Comprehension and Attention in Multimodal Models [3.624741029063979]
Multimodal Large Language Models (MLLMs) often fail to fully leverage visual input, defaulting to strong language priors.<n>Our approach first provides insights into how MLLMs internally build visual understanding of image regions and then introduces techniques to amplify this capability.<n>We demonstrate the superior multimodal understanding of our resultant model through a detailed upstream analysis quantifying its ability to predict visually-dependent tokens as well as 10 pt boost on visually challenging tasks.
arXiv Detail & Related papers (2025-05-08T20:04:27Z) - VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity [34.29409506366145]
VERIFY is a benchmark designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs.<n>Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes.<n>We propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns.
arXiv Detail & Related papers (2025-03-14T16:26:11Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information.<n>We introduce VOILA, a benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning.<n>We reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning.
arXiv Detail & Related papers (2025-02-25T23:36:19Z) - Global Semantic-Guided Sub-image Feature Weight Allocation in High-Resolution Large Vision-Language Models [50.98559225639266]
Sub-images with higher semantic relevance to the entire image encapsulate richer visual information for preserving the model's visual understanding ability.<n>Global Semantic-guided Weight Allocator (GSWA) module allocates weights to sub-images based on their relative information density.<n>SleighVL, a lightweight yet high-performing model, outperforms models with comparable parameters and remains competitive with larger models.
arXiv Detail & Related papers (2025-01-24T06:42:06Z) - MG-LLaVA: Towards Multi-Granularity Visual Instruction Tuning [44.497776004372724]
Multi-modal large language models (MLLMs) have made significant strides in various visual understanding tasks.
We present MG-LLaVA, an innovative MLLM that enhances the model's visual processing capabilities by incorporating a multi-granularity vision flow.
To further refine the model's object recognition abilities, we incorporate object-level features derived from bounding boxes identified by offline detectors.
arXiv Detail & Related papers (2024-06-25T17:55:11Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z) - Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models [76.48370548802464]
This paper focuses on conducting a series of analytical experiments to examine the relations between the multi-head self-attention and the final MRC system performance.
We discover that passage-to-question and passage understanding attentions are the most important ones in the question answering process.
Through comprehensive visualizations and case studies, we also observe several general findings on the attention maps, which can be helpful to understand how these models solve the questions.
arXiv Detail & Related papers (2021-08-26T04:23:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.