論文の概要: Quadratic mutual information regularization in real-time deep CNN models
- arxiv url: http://arxiv.org/abs/2108.11774v1
- Date: Thu, 26 Aug 2021 13:14:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-27 20:06:02.622859
- Title: Quadratic mutual information regularization in real-time deep CNN models
- Title(参考訳): リアルタイム深部CNNモデルにおける二次的相互情報正規化
- Authors: Maria Tzelepi and Anastasios Tefas
- Abstract要約: 擬似相互情報による正規化手法を提案する。
種々の二項分類問題の実験を行い,提案モデルの有効性を示した。
- 参考スコア(独自算出の注目度): 51.66271681532262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, regularized lightweight deep convolutional neural network
models, capable of effectively operating in real-time on devices with
restricted computational power for high-resolution video input are proposed.
Furthermore, a novel regularization method motivated by the Quadratic Mutual
Information, in order to improve the generalization ability of the utilized
models is proposed. Extensive experiments on various binary classification
problems involved in autonomous systems are performed, indicating the
effectiveness of the proposed models as well as of the proposed regularizer.
- Abstract(参考訳): 本稿では,高分解能映像入力のための計算能力に制限のあるデバイス上で,リアルタイムに効果的に動作可能な正規化軽量深層畳み込みニューラルネットワークモデルを提案する。
さらに,利用モデルの一般化能力を向上させるために,2次相互情報に動機づけられた新しい正規化手法を提案する。
自律システムに関わる様々な二分分類問題に関する広範囲な実験を行い,提案モデルの有効性と,提案する正規化器の有効性を示した。
関連論文リスト
- Enhancing Scalability in Recommender Systems through Lottery Ticket
Hypothesis and Knowledge Distillation-based Neural Network Pruning [1.3654846342364308]
本研究では、ニューラルネットワークの効率的なプルーニングを目的とした革新的なアプローチを導入し、エッジデバイスへの展開に特に焦点をあてる。
本手法は,LTH(Lottery Ticket hypothesis)とKD(Knowledge Distillation)フレームワークを統合することで,3つの異なるプルーニングモデルの定式化を実現する。
幸いなことに、我々のアプローチはGPU計算能力の最大66.67%を削減した。
論文 参考訳(メタデータ) (2024-01-19T04:17:50Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - An Explainable Framework for Machine learning-Based Reactive Power
Optimization of Distribution Network [3.239871645288635]
分散ネットワークにおけるリアクティブパワーを最適化するために、説明可能な機械学習フレームワークを提案する。
反応電力最適化の解に対する各入力特徴の寄与を測定するために、Shapley付加的説明フレームワークが提示される。
重い計算負担を回避するため,Shapley値を推定するためにモデル非依存近似法を開発した。
論文 参考訳(メタデータ) (2023-11-07T10:24:03Z) - Neural Harmonium: An Interpretable Deep Structure for Nonlinear Dynamic
System Identification with Application to Audio Processing [4.599180419117645]
解釈可能性(Interpretability)は、モデルを一般化し、その限界を明らかにする能力を理解するのに役立ちます。
本稿では,動的システムモデリングのための因果解釈可能な深部構造を提案する。
提案モデルは,時間周波数領域におけるシステムモデリングによる調和解析を利用する。
論文 参考訳(メタデータ) (2023-10-10T21:32:15Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Maximum entropy exploration in contextual bandits with neural networks
and energy based models [63.872634680339644]
モデルには2つのクラスがあり、1つはニューラルネットワークを報酬推定器とし、もう1つはエネルギーベースモデルを示す。
両手法は、エネルギーベースモデルが最も優れた性能を持つ、よく知られた標準アルゴリズムより優れていることを示す。
これは、静的および動的設定でよく機能する新しいテクニックを提供し、特に連続的なアクション空間を持つ非線形シナリオに適している。
論文 参考訳(メタデータ) (2022-10-12T15:09:45Z) - On the adaptation of recurrent neural networks for system identification [2.5234156040689237]
本稿では,動的システムのリカレントニューラルネットワーク(RNN)モデルの高速かつ効率的な適応を可能にするトランスファー学習手法を提案する。
その後、システムダイナミクスが変化すると仮定され、摂動系における名目モデルの性能が不可避的に低下する。
ミスマッチに対処するため、新しい動的状態からの新鮮なデータに基づいてトレーニングされた付加的補正項でモデルを拡張する。
論文 参考訳(メタデータ) (2022-01-21T12:04:17Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
低次元潜在空間におけるフォッカー・プランク方程式の解法として問題を定式化する新しい手法を導入する。
提案モデルでは,潜在分散モーフィング,ジェネレータ,パラメータ化Fokker-Planckカーネル関数からなる。
論文 参考訳(メタデータ) (2021-05-10T17:42:01Z) - Prediction-Centric Learning of Independent Cascade Dynamics from Partial
Observations [13.680949377743392]
本稿では,このモデルから生成された予測が正確であるような拡散モデルの学習の問題に対処する。
本稿では,スケーラブルな動的メッセージパッシング手法に基づく計算効率のよいアルゴリズムを提案する。
学習モデルからの抽出可能な推論は,元のモデルと比較して限界確率の予測精度がよいことを示す。
論文 参考訳(メタデータ) (2020-07-13T17:58:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。