論文の概要: On the adaptation of recurrent neural networks for system identification
- arxiv url: http://arxiv.org/abs/2201.08660v1
- Date: Fri, 21 Jan 2022 12:04:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-24 13:29:52.903963
- Title: On the adaptation of recurrent neural networks for system identification
- Title(参考訳): システム同定のための繰り返しニューラルネットワークの適応について
- Authors: Marco Forgione, Aneri Muni, Dario Piga, Marco Gallieri
- Abstract要約: 本稿では,動的システムのリカレントニューラルネットワーク(RNN)モデルの高速かつ効率的な適応を可能にするトランスファー学習手法を提案する。
その後、システムダイナミクスが変化すると仮定され、摂動系における名目モデルの性能が不可避的に低下する。
ミスマッチに対処するため、新しい動的状態からの新鮮なデータに基づいてトレーニングされた付加的補正項でモデルを拡張する。
- 参考スコア(独自算出の注目度): 2.5234156040689237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a transfer learning approach which enables fast and
efficient adaptation of Recurrent Neural Network (RNN) models of dynamical
systems. A nominal RNN model is first identified using available measurements.
The system dynamics are then assumed to change, leading to an unacceptable
degradation of the nominal model performance on the perturbed system. To cope
with the mismatch, the model is augmented with an additive correction term
trained on fresh data from the new dynamic regime. The correction term is
learned through a Jacobian Feature Regression (JFR) method defined in terms of
the features spanned by the model's Jacobian with respect to its nominal
parameters. A non-parametric view of the approach is also proposed, which
extends recent work on Gaussian Process (GP) with Neural Tangent Kernel
(NTK-GP) to the RNN case (RNTK-GP). This can be more efficient for very large
networks or when only few data points are available. Implementation aspects for
fast and efficient computation of the correction term, as well as the initial
state estimation for the RNN model are described. Numerical examples show the
effectiveness of the proposed methodology in presence of significant system
variations.
- Abstract(参考訳): 本稿では,動的システムのリカレントニューラルネットワーク(RNN)モデルの高速かつ効率的な適応を可能にするトランスファー学習手法を提案する。
名目RNNモデルは、まず利用可能な測定値を用いて識別される。
その後、システムダイナミクスが変化すると仮定され、摂動系における名目モデルの性能が不可避的に低下する。
ミスマッチに対処するため、新しい動的状態からの新鮮なデータに基づいてトレーニングされた付加的補正項でモデルを拡張する。
補正項は、ジャコビアン特徴回帰 (JFR) 法によって学習され、モデルのヤコビアンによってそのパラメーターに関して広がる特徴について定義される。
また, ニューラルタンジェントカーネル (NTK-GP) を用いたガウス過程 (GP) をRNNケース (RNTK-GP) に拡張した非パラメトリックなアプローチも提案されている。
これは、非常に大きなネットワークやデータポイントが少ない場合に、より効率的になる。
補正項の高速かつ効率的な計算とRNNモデルの初期状態推定のための実装側面について述べる。
数値的な例は,提案手法の有効性を示す。
関連論文リスト
- Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
異常検出(AD)は、将来の通信システムのレジリエンスを確保するための重要な要素として、ますます認識されている。
この研究は、不完全測定を用いたネットワークフローにおけるADについて考察する。
本稿では,正規化モデル適合性に基づくブロック帰属凸近似アルゴリズムを提案する。
ベイズ的アプローチに触発されて、我々はモデルアーキテクチャを拡張し、フローごとのオンライン適応とステップごとの統計処理を行う。
論文 参考訳(メタデータ) (2024-09-17T19:59:57Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Convolutional Dictionary Learning by End-To-End Training of Iterative
Neural Networks [3.6280929178575994]
本研究では,教師付きおよび物理情報を用いたオンライン畳み込み辞書学習アルゴリズムとして利用可能な INN を構築する。
提案手法は,従来の2つのモデルに依存しない訓練法よりも改善され,深い INN と比較して競争結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-09T12:15:38Z) - Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics [6.940097162264939]
ランダム性により、SCNは冗長で品質の低い近似線形相関ノードを生成する可能性が高まる。
機械学習の基本原理、すなわち、パラメータが少ないモデルでは、一般化が向上する。
本稿では,ネットワーク構造低減のために,低品質な隠れノードをフィルタする直交SCN(OSCN)を提案する。
論文 参考訳(メタデータ) (2022-05-26T07:07:26Z) - On feedforward control using physics-guided neural networks: Training
cost regularization and optimized initialization [0.0]
モデルベースのフィードフォワードコントローラの性能は、典型的には逆システム力学モデルの精度によって制限される。
本稿では,特定物理パラメータを用いた正規化手法を提案する。
実生活の産業用リニアモーターで検証され、追跡精度と外挿の精度が向上する。
論文 参考訳(メタデータ) (2022-01-28T12:51:25Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
非線形システム識別のための新しいDeep Neural Network (DNN)アーキテクチャを提案する。
メモリシステムにインスパイアされたインダクティブバイアス(アーキテクチャ)と正規化(損失関数)を導入する。
このアーキテクチャは、利用可能なデータのみに基づいて、自動的な複雑性の選択を可能にする。
論文 参考訳(メタデータ) (2021-06-06T10:06:07Z) - Contextual HyperNetworks for Novel Feature Adaptation [43.49619456740745]
Contextual HyperNetwork(CHN)は、ベースモデルを新機能に拡張するためのパラメータを生成する。
予測時、CHNはニューラルネットワークを通る単一のフォワードパスのみを必要とし、大幅なスピードアップをもたらす。
本システムでは,既存のインプテーションやメタラーニングベースラインよりも,新しい特徴のマイズショット学習性能が向上することを示す。
論文 参考訳(メタデータ) (2021-04-12T23:19:49Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。