A Hierarchical Assessment of Adversarial Severity
- URL: http://arxiv.org/abs/2108.11785v1
- Date: Thu, 26 Aug 2021 13:29:17 GMT
- Title: A Hierarchical Assessment of Adversarial Severity
- Authors: Guillaume Jeanneret, Juan C Perez, Pablo Arbelaez
- Abstract summary: We study the effects of adversarial noise by measuring the Robustness and Severity into a large-scale dataset: iNaturalist-H.
We enhance the traditional adversarial training with a simple yet effective Hierarchical Curriculum Training to learn these nodes gradually within the hierarchical tree.
We perform extensive experiments showing that hierarchical defenses allow deep models to boost the adversarial Robustness by 1.85% and reduce the severity of all attacks by 0.17, on average.
- Score: 3.0478504236139528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial Robustness is a growing field that evidences the brittleness of
neural networks. Although the literature on adversarial robustness is vast, a
dimension is missing in these studies: assessing how severe the mistakes are.
We call this notion "Adversarial Severity" since it quantifies the downstream
impact of adversarial corruptions by computing the semantic error between the
misclassification and the proper label. We propose to study the effects of
adversarial noise by measuring the Robustness and Severity into a large-scale
dataset: iNaturalist-H. Our contributions are: (i) we introduce novel
Hierarchical Attacks that harness the rich structured space of labels to create
adversarial examples. (ii) These attacks allow us to benchmark the Adversarial
Robustness and Severity of classification models. (iii) We enhance the
traditional adversarial training with a simple yet effective Hierarchical
Curriculum Training to learn these nodes gradually within the hierarchical
tree. We perform extensive experiments showing that hierarchical defenses allow
deep models to boost the adversarial Robustness by 1.85% and reduce the
severity of all attacks by 0.17, on average.
Related papers
- Revisiting DeepFool: generalization and improvement [17.714671419826715]
We introduce a new family of adversarial attacks that strike a balance between effectiveness and computational efficiency.
Our proposed attacks are also suitable for evaluating the robustness of large models.
arXiv Detail & Related papers (2023-03-22T11:49:35Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Improving Adversarial Robustness with Self-Paced Hard-Class Pair
Reweighting [5.084323778393556]
adversarial training with untargeted attacks is one of the most recognized methods.
We find that the naturally imbalanced inter-class semantic similarity makes those hard-class pairs to become the virtual targets of each other.
We propose to upweight hard-class pair loss in model optimization, which prompts learning discriminative features from hard classes.
arXiv Detail & Related papers (2022-10-26T22:51:36Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - Evaluation of Neural Networks Defenses and Attacks using NDCG and
Reciprocal Rank Metrics [6.6389732792316]
We present two metrics which are specifically designed to measure the effect of attacks, or the recovery effect of defenses, on the output of neural networks in classification tasks.
Inspired by the normalized discounted cumulative gain and the reciprocal rank metrics used in information retrieval literature, we treat the neural network predictions as ranked lists of results.
Compared to the common classification metrics, our proposed metrics demonstrate superior informativeness and distinctiveness.
arXiv Detail & Related papers (2022-01-10T12:54:45Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Adversarial Attack and Defense in Deep Ranking [100.17641539999055]
We propose two attacks against deep ranking systems that can raise or lower the rank of chosen candidates by adversarial perturbations.
Conversely, an anti-collapse triplet defense is proposed to improve the ranking model robustness against all proposed attacks.
Our adversarial ranking attacks and defenses are evaluated on MNIST, Fashion-MNIST, CUB200-2011, CARS196 and Stanford Online Products datasets.
arXiv Detail & Related papers (2021-06-07T13:41:45Z) - Learning and Certification under Instance-targeted Poisoning [49.55596073963654]
We study PAC learnability and certification under instance-targeted poisoning attacks.
We show that when the budget of the adversary scales sublinearly with the sample complexity, PAC learnability and certification are achievable.
We empirically study the robustness of K nearest neighbour, logistic regression, multi-layer perceptron, and convolutional neural network on real data sets.
arXiv Detail & Related papers (2021-05-18T17:48:15Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
In particular, our layer generates an input perturbation in the opposite direction of the adversarial one.
We verify the effectiveness of our approach by combining our layer with both nominally and robustly trained models.
Our anti-adversary layer significantly enhances model robustness while coming at no cost on clean accuracy.
arXiv Detail & Related papers (2021-03-26T09:36:59Z) - Improving Adversarial Robustness by Enforcing Local and Global
Compactness [19.8818435601131]
Adversary training is the most successful method that consistently resists a wide range of attacks.
We propose the Adversary Divergence Reduction Network which enforces local/global compactness and the clustering assumption.
The experimental results demonstrate that augmenting adversarial training with our proposed components can further improve the robustness of the network.
arXiv Detail & Related papers (2020-07-10T00:43:06Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
We demonstrate that the state-of-the-art gait recognition model is vulnerable to such attacks.
We employ a generative adversarial network based architecture to semantically generate adversarial high-quality gait silhouettes or video frames.
The experimental results show that if only one-fortieth of the frames are attacked, the accuracy of the target model drops dramatically.
arXiv Detail & Related papers (2020-02-22T10:08:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.