論文の概要: Sketches for Time-Dependent Machine Learning
- arxiv url: http://arxiv.org/abs/2108.11923v1
- Date: Thu, 26 Aug 2021 17:24:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-27 15:29:04.341010
- Title: Sketches for Time-Dependent Machine Learning
- Title(参考訳): 時間依存機械学習のためのスケッチ
- Authors: Jesus Antonanzas, Marta Arias and Albert Bifet
- Abstract要約: 時系列データは、それらを生成する基盤となるプロセスの変化にさらされる可能性がある。
我々は、現在のデータ分布とその時間的進化に関する情報を機械学習アルゴリズムに組み込む方法を提案する。
- 参考スコア(独自算出の注目度): 8.824033416765106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series data can be subject to changes in the underlying process that
generates them and, because of these changes, models built on old samples can
become obsolete or perform poorly. In this work, we present a way to
incorporate information about the current data distribution and its evolution
across time into machine learning algorithms. Our solution is based on
efficiently maintaining statistics, particularly the mean and the variance, of
data features at different time resolutions. These data summarisations can be
performed over the input attributes, in which case they can then be fed into
the model as additional input features, or over latent representations learned
by models, such as those of Recurrent Neural Networks. In classification tasks,
the proposed techniques can significantly outperform the prediction
capabilities of equivalent architectures with no feature / latent
summarisations. Furthermore, these modifications do not introduce notable
computational and memory overhead when properly adjusted.
- Abstract(参考訳): 時系列データは、それらを生成する基盤となるプロセスの変更の対象となり、これらの変更により、古いサンプル上に構築されたモデルが時代遅れになったり、パフォーマンスが悪くなったりします。
本研究では,現在のデータ分布とその時間的変化に関する情報を機械学習アルゴリズムに組み込む手法を提案する。
我々のソリューションは、データ特徴の統計、特に平均と分散を異なる時間分解能で効率的に維持することに基づいている。
これらのデータ要約は、入力属性で実行することができ、その場合、追加の入力機能としてモデルに入力したり、リカレントニューラルネットワークのようなモデルによって学習された潜在表現としてモデルに入力することができる。
分類タスクにおいて,提案手法は,特徴や潜在要約を伴わない等価アーキテクチャの予測能力を大幅に上回ることができる。
さらに、これらの修正は、適切に調整されたときに顕著な計算およびメモリオーバーヘッドを生じさせない。
関連論文リスト
- Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
本稿では,エンコーダのみのトランスフォーマーアーキテクチャのアテンションヘッドにおける意味的意味パターンについて検討する。
注意重みの修正はトレーニングプロセスの促進だけでなく,最適化の安定性の向上にも寄与する。
論文 参考訳(メタデータ) (2024-09-20T07:41:47Z) - Unlearning Information Bottleneck: Machine Unlearning of Systematic Patterns and Biases [6.936871609178494]
本稿では,機械学習のプロセスを強化するための新しい情報理論フレームワークであるUnlearning Information Bottleneck(UIB)を紹介する。
変分上界を提案することにより,データ分布の変化を安価な計算コストと統合する動的事前計算により,モデルパラメータを再検討する。
さまざまなデータセット,モデル,未学習手法を対象とした実験により,本手法は学習後のモデルの性能を維持しながら,体系的なパターンやバイアスを効果的に除去することを示した。
論文 参考訳(メタデータ) (2024-05-22T21:54:05Z) - Probing the Robustness of Time-series Forecasting Models with
CounterfacTS [1.823020744088554]
我々は,時系列予測タスクにおけるディープラーニングモデルの堅牢性を調査するツールであるCounterfacTSを提示し,公開する。
CounterfacTSにはユーザフレンドリーなインターフェースがあり、時系列データとその予測を視覚化、比較、定量化することができる。
論文 参考訳(メタデータ) (2024-03-06T07:34:47Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Towards Continually Learning Application Performance Models [1.2278517240988065]
機械学習ベースのパフォーマンスモデルは、重要なジョブスケジューリングとアプリケーションの最適化決定を構築するために、ますます使われています。
伝統的に、これらのモデルは、より多くのサンプルが時間とともに収集されるため、データ分布が変化しないと仮定する。
本研究では,分布のドリフトを考慮した継続的な学習性能モデルを構築し,破滅的な忘れを軽減し,一般化性を向上させる。
論文 参考訳(メタデータ) (2023-10-25T20:48:46Z) - Time-Varying Propensity Score to Bridge the Gap between the Past and Present [104.46387765330142]
本稿では,データ分布の段階的変化を検出するための時間変化確率スコアを提案する。
実装のさまざまな方法を示し、さまざまな問題について評価する。
論文 参考訳(メタデータ) (2022-10-04T07:21:49Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
下位のデータ構造は、しばしば学習タスクのソリューションを改善するために利用される。
データ拡張は、入力データに複数の変換を適用することで、トレーニング中にこれらの対称性を誘導する。
この作業は、学習タスクを解決しながらデータ拡張を自動的に適応することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2022-09-29T18:11:01Z) - Statistical process monitoring of artificial neural networks [1.3213490507208525]
機械学習では、入力と出力の間の学習された関係は、モデルのデプロイの間も有効でなければならない。
本稿では,データストリームの非定常化開始時刻を決定するために,ANNが生成するデータ(埋め込み)の潜在的特徴表現について検討する。
論文 参考訳(メタデータ) (2022-09-15T16:33:36Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - TimeVAE: A Variational Auto-Encoder for Multivariate Time Series
Generation [6.824692201913679]
可変オートエンコーダ(VAE)を用いて時系列データを合成生成する新しいアーキテクチャを提案する。
提案されたアーキテクチャには、解釈可能性、ドメイン知識をエンコードする能力、トレーニング時間の短縮など、いくつかの異なる特性がある。
論文 参考訳(メタデータ) (2021-11-15T21:42:14Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。