論文の概要: Unlearning Information Bottleneck: Machine Unlearning of Systematic Patterns and Biases
- arxiv url: http://arxiv.org/abs/2405.14020v1
- Date: Wed, 22 May 2024 21:54:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 19:54:29.246141
- Title: Unlearning Information Bottleneck: Machine Unlearning of Systematic Patterns and Biases
- Title(参考訳): Unlearning Information Bottleneck: システムパターンとバイアスの機械学習
- Authors: Ling Han, Hao Huang, Dustin Scheinost, Mary-Anne Hartley, María Rodríguez Martínez,
- Abstract要約: 本稿では,機械学習のプロセスを強化するための新しい情報理論フレームワークであるUnlearning Information Bottleneck(UIB)を紹介する。
変分上界を提案することにより,データ分布の変化を安価な計算コストと統合する動的事前計算により,モデルパラメータを再検討する。
さまざまなデータセット,モデル,未学習手法を対象とした実験により,本手法は学習後のモデルの性能を維持しながら,体系的なパターンやバイアスを効果的に除去することを示した。
- 参考スコア(独自算出の注目度): 6.936871609178494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective adaptation to distribution shifts in training data is pivotal for sustaining robustness in neural networks, especially when removing specific biases or outdated information, a process known as machine unlearning. Traditional approaches typically assume that data variations are random, which makes it difficult to adjust the model parameters accurately to remove patterns and characteristics from unlearned data. In this work, we present Unlearning Information Bottleneck (UIB), a novel information-theoretic framework designed to enhance the process of machine unlearning that effectively leverages the influence of systematic patterns and biases for parameter adjustment. By proposing a variational upper bound, we recalibrate the model parameters through a dynamic prior that integrates changes in data distribution with an affordable computational cost, allowing efficient and accurate removal of outdated or unwanted data patterns and biases. Our experiments across various datasets, models, and unlearning methods demonstrate that our approach effectively removes systematic patterns and biases while maintaining the performance of models post-unlearning.
- Abstract(参考訳): トレーニングデータにおける分散シフトへの効果的な適応は、特に特定のバイアスや時代遅れの情報を取り除く場合、ニューラルネットワークの堅牢性を維持するために重要であり、機械学習として知られるプロセスである。
従来のアプローチでは、データバリエーションはランダムであると考えられており、モデルパラメータを正確に調整し、未学習のデータからパターンや特徴を取り除くことは困難である。
本研究では,機械学習のプロセスを強化するための新しい情報理論フレームワークであるUnlearning Information Bottleneck(UIB)を提案する。
変分上限を提案することによって,データ分散の変化を手頃な計算コストと統合し,古いデータパターンや不要なデータパターンやバイアスを効率的かつ正確に除去する,動的事前計算によるモデルパラメータの再検討を行う。
さまざまなデータセット,モデル,未学習手法を対象とした実験により,本手法は学習後のモデルの性能を維持しながら,体系的なパターンやバイアスを効果的に除去することを示した。
関連論文リスト
- Machine Unlearning on Pre-trained Models by Residual Feature Alignment Using LoRA [15.542668474378633]
本稿では,事前学習モデルを用いた新しい機械学習手法を提案する。
LoRAを利用して、モデルの中間機能を事前訓練された特徴と残像に分解する。
本手法は,保持集合上のゼロ残差を学習し,未学習集合上でシフト残差を学習することを目的としている。
論文 参考訳(メタデータ) (2024-11-13T08:56:35Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
オフライントレーニングとオンライン評価段階を含む,データ影響評価のための効率的なフレームワークを提案する。
提案手法は, 直接再学習法と比較して, プロセスの大幅な高速化を図りながら, 同等のモデル行動評価を実現する。
論文 参考訳(メタデータ) (2024-04-22T09:16:14Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - A Framework for Machine Learning of Model Error in Dynamical Systems [7.384376731453594]
データから動的システムを特定するために,機械的アプローチと機械学習アプローチを混在させる統一フレームワークを提案する。
モデルエラーがメモリレスであり、大きなメモリを持つ問題に対して、連続時間と離散時間の両方で問題を提起した。
ハイブリッド手法は、データ飢餓、モデルの複雑さの要求、全体的な予測性能において、データ駆動アプローチよりも大幅に優れています。
論文 参考訳(メタデータ) (2021-07-14T12:47:48Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Knowledge-Based Learning of Nonlinear Dynamics and Chaos [3.673994921516517]
本稿では,非線形システムから観測結果に基づいて予測モデルを抽出するための普遍的な学習フレームワークを提案する。
我々のフレームワークは、非線形システムを連続時間系として自然にモデル化するため、第一原理知識を容易に組み込むことができる。
論文 参考訳(メタデータ) (2020-10-07T13:50:13Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
本稿では,トレーニングデータの密度と制御性能の関係を考察する。
データセットの品質尺度を定式化し、$rho$-gap と呼ぶ。
フィードバック線形化制御法に$rho$-gapを適用する方法を示す。
論文 参考訳(メタデータ) (2020-05-25T12:13:49Z) - From Learning to Meta-Learning: Reduced Training Overhead and Complexity
for Communication Systems [40.427909614453526]
機械学習手法は、データやアクティブな観察に基づいて、一定の学習手順を用いて、与えられたモデルクラスに置かれるように制約されたモデルのパラメータを適応する。
メタトレーニングによる帰納バイアスでは、トレーニングデータと/または時間の複雑さを減らして、マシンラーニングモデルのトレーニングを実行することができる。
本稿では,メタラーニングの高度導入と通信システムへの応用について述べる。
論文 参考訳(メタデータ) (2020-01-05T12:54:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。