Sketches for Time-Dependent Machine Learning
- URL: http://arxiv.org/abs/2108.11923v1
- Date: Thu, 26 Aug 2021 17:24:56 GMT
- Title: Sketches for Time-Dependent Machine Learning
- Authors: Jesus Antonanzas, Marta Arias and Albert Bifet
- Abstract summary: Time series data can be subject to changes in the underlying process that generates them.
We present a way to incorporate information about the current data distribution and its evolution across time into machine learning algorithms.
- Score: 8.824033416765106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series data can be subject to changes in the underlying process that
generates them and, because of these changes, models built on old samples can
become obsolete or perform poorly. In this work, we present a way to
incorporate information about the current data distribution and its evolution
across time into machine learning algorithms. Our solution is based on
efficiently maintaining statistics, particularly the mean and the variance, of
data features at different time resolutions. These data summarisations can be
performed over the input attributes, in which case they can then be fed into
the model as additional input features, or over latent representations learned
by models, such as those of Recurrent Neural Networks. In classification tasks,
the proposed techniques can significantly outperform the prediction
capabilities of equivalent architectures with no feature / latent
summarisations. Furthermore, these modifications do not introduce notable
computational and memory overhead when properly adjusted.
Related papers
- Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - Unlearning Information Bottleneck: Machine Unlearning of Systematic Patterns and Biases [6.936871609178494]
We present Unlearning Information Bottleneck (UIB), a novel information-theoretic framework designed to enhance the process of machine unlearning.
By proposing a variational upper bound, we recalibrate the model parameters through a dynamic prior that integrates changes in data distribution with an affordable computational cost.
Our experiments across various datasets, models, and unlearning methods demonstrate that our approach effectively removes systematic patterns and biases while maintaining the performance of models post-unlearning.
arXiv Detail & Related papers (2024-05-22T21:54:05Z) - Probing the Robustness of Time-series Forecasting Models with
CounterfacTS [1.823020744088554]
We present and publicly release CounterfacTS, a tool to probe the robustness of deep learning models in time-series forecasting tasks.
CounterfacTS has a user-friendly interface that allows the user to visualize, compare and quantify time series data and their forecasts.
arXiv Detail & Related papers (2024-03-06T07:34:47Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Towards Continually Learning Application Performance Models [1.2278517240988065]
Machine learning-based performance models are increasingly being used to build critical job scheduling and application optimization decisions.
Traditionally, these models assume that data distribution does not change as more samples are collected over time.
We develop continually learning performance models that account for the distribution drift, alleviate catastrophic forgetting, and improve generalizability.
arXiv Detail & Related papers (2023-10-25T20:48:46Z) - Time-Varying Propensity Score to Bridge the Gap between the Past and Present [104.46387765330142]
We introduce a time-varying propensity score that can detect gradual shifts in the distribution of data.
We demonstrate different ways of implementing it and evaluate it on a variety of problems.
arXiv Detail & Related papers (2022-10-04T07:21:49Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - Statistical process monitoring of artificial neural networks [1.3213490507208525]
In machine learning, the learned relationship between the input and the output must remain valid during the model's deployment.
We propose considering the latent feature representation of the data (called "embedding") generated by the ANN to determine the time when the data stream starts being nonstationary.
arXiv Detail & Related papers (2022-09-15T16:33:36Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - TimeVAE: A Variational Auto-Encoder for Multivariate Time Series
Generation [6.824692201913679]
We propose a novel architecture for synthetically generating time-series data with the use of Variversaational Auto-Encoders (VAEs)
The proposed architecture has several distinct properties: interpretability, ability to encode domain knowledge, and reduced training times.
arXiv Detail & Related papers (2021-11-15T21:42:14Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.