論文の概要: DeepFlow: Abnormal Traffic Flow Detection Using Siamese Networks
- arxiv url: http://arxiv.org/abs/2108.12016v1
- Date: Thu, 26 Aug 2021 19:56:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-30 22:05:49.017403
- Title: DeepFlow: Abnormal Traffic Flow Detection Using Siamese Networks
- Title(参考訳): DeepFlow:シームズネットワークを用いた異常交通流検出
- Authors: Sepehr Sabour, Sanjeev Rao and Majid Ghaderi
- Abstract要約: 我々は,シームズニューラルネットワークに基づくトラフィック異常検出システムであるDeepFlowを開発した。
本モデルでは,車両から収集した軌跡データを解析することにより,異常な交通流を検出することができる。
その結果,DeepFlowはF1スコアの78%で異常なトラフィックパターンを検出し,他の既存手法よりも優れていた。
- 参考スコア(独自算出の注目度): 4.544151613454639
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, many cities are equipped with surveillance systems and traffic
control centers to monitor vehicular traffic for road safety and efficiency.
The monitoring process is mostly done manually which is inefficient and
expensive. In recent years, several data-driven solutions have been proposed in
the literature to automatically analyze traffic flow data using machine
learning techniques. However, existing solutions require large and
comprehensive datasets for training which are not readily available, thus
limiting their application. In this paper, we develop a traffic anomaly
detection system, referred to as DeepFlow, based on Siamese neural networks,
which are suitable in scenarios where only small datasets are available for
training. Our model can detect abnormal traffic flows by analyzing the
trajectory data collected from the vehicles in a fleet. To evaluate DeepFlow,
we use realistic vehicular traffic simulations in SUMO. Our results show that
DeepFlow detects abnormal traffic patterns with an F1 score of 78%, while
outperforming other existing approaches including: Dynamic Time Warping (DTW),
Global Alignment Kernels (GAK), and iForest.
- Abstract(参考訳): 現在、多くの都市は道路安全と効率のために車両交通を監視する監視システムと交通管制センターを備えている。
監視プロセスは主に手動で行われ、非効率で費用がかかる。
近年,機械学習技術を用いてトラフィックフローデータを自動的に解析する手法が文献で提案されている。
しかし、既存のソリューションでは、簡単には利用できない大規模な、包括的なデータセットを必要とするため、アプリケーションに制限がある。
本稿では,小規模データセットのみをトレーニングに使用するシナリオに適した,シャムニューラルネットに基づくトラフィック異常検出システムであるdeepflowを開発した。
本モデルでは,車両から収集した軌道データを解析することにより,異常な交通流を検出することができる。
DeepFlowを評価するために、SUMOで現実的な車両交通シミュレーションを使用する。
以上の結果から,DeepFlowはF1スコアの78%で異常なトラフィックパターンを検出すると同時に,動的時間ウォーピング(DTW),グローバルアライメントカーネル(GAK),iForestなどの既存手法よりも優れていた。
関連論文リスト
- Energy-Guided Data Sampling for Traffic Prediction with Mini Training Datasets [13.065729535009925]
本稿では、畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)アーキテクチャを融合して、トラフィックフローのダイナミクスを予測する革新的なソリューションを提案する。
本研究の重要な成果は,小規模な交通システムを対象としたシミュレーションから,大規模交通システムのトレーニングデータをサンプリングできることである。
論文 参考訳(メタデータ) (2024-03-27T15:57:42Z) - Traffic Volume Prediction using Memory-Based Recurrent Neural Networks:
A comparative analysis of LSTM and GRU [5.320087179174425]
我々は、リアルタイムにトラフィック量を予測するための非線形メモリベースディープニューラルネットワークモデルを開発した。
本実験は,高ダイナミックかつ異種交通環境における交通量予測における提案モデルの有効性を実証するものである。
論文 参考訳(メタデータ) (2023-03-22T15:25:07Z) - Traffic Scene Parsing through the TSP6K Dataset [109.69836680564616]
高品質なピクセルレベルのアノテーションとインスタンスレベルのアノテーションを備えた,TSP6Kと呼ばれる特殊なトラフィック監視データセットを導入する。
データセットは、既存の運転シーンの何倍ものトラフィック参加者を持つ、より混雑した交通シーンをキャプチャする。
交通シーンの異なるセマンティック領域の詳細を復元するシーン解析のためのディテールリフィニングデコーダを提案する。
論文 参考訳(メタデータ) (2023-03-06T02:05:14Z) - Traffic State Estimation from Vehicle Trajectories with Anisotropic Gaussian Processes [21.13555047611666]
本稿では,標準等方性GPカーネルを異方性カーネルに変換するカーネル回転再パラメータ化方式を提案する。
また、複数のレーンの交通状態を同時に推定できるマルチアウトプットGPへのアプローチも拡張しています。
連結車両(CV)と人間駆動車両(HV)の混合交通について検討し,交通状態推定(TSE)方式を5%から50%まで実験した。
論文 参考訳(メタデータ) (2023-03-04T03:59:17Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - AutoFlow: Learning a Better Training Set for Optical Flow [62.40293188964933]
AutoFlowは、光学フローのトレーニングデータをレンダリングする手法である。
AutoFlowはPWC-NetとRAFTの両方の事前トレーニングにおいて最先端の精度を実現する。
論文 参考訳(メタデータ) (2021-04-29T17:55:23Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
深部交通光検出器のための人工的な交通関連トレーニングデータを生成する手法を提案する。
このデータは、任意の画像背景の上に偽のトラフィックシーンをブレンドするために、基本的な非現実的なコンピュータグラフィックスを用いて生成される。
また、交通信号データセットの本質的なデータ不均衡問題にも対処し、主に黄色い状態のサンプルの少なさによって引き起こされる。
論文 参考訳(メタデータ) (2020-11-07T19:57:22Z) - Automatic Detection of Major Freeway Congestion Events Using Wireless
Traffic Sensor Data: A Machine Learning Approach [0.0]
本稿では,高速道路交通渋滞事象の確実な検出と特徴付けのための機械学習に基づくアプローチを提案する。
速度データは最初10時間のスライディングウィンドウでタイムウインドウされ、3つのニューラルネットワークに入力される。
スライディングウィンドウは、各スローダウンイベントを複数回キャプチャし、渋滞検出の信頼性を高める。
論文 参考訳(メタデータ) (2020-07-09T21:38:45Z) - Traffic Flow Forecast of Road Networks with Recurrent Neural Networks [0.0]
効率的なインテリジェント交通システムには交通流の予測が不可欠である。
本研究では, 様々なリカレントニューラルネットワークを用いて, この予測を行う。
多くの場合、ゲート再帰単位を持つベクトル出力モデルは、テストセット上で最小の誤差を達成した。
論文 参考訳(メタデータ) (2020-06-08T15:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。