論文の概要: From Pivots to Graphs: Augmented CycleDensity as a Generalization to One
Time InverseConsultation
- arxiv url: http://arxiv.org/abs/2108.12459v1
- Date: Fri, 27 Aug 2021 19:00:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-01 11:14:57.802154
- Title: From Pivots to Graphs: Augmented CycleDensity as a Generalization to One
Time InverseConsultation
- Title(参考訳): Pivots から Graphs: 一般化としてのAugmented CycleDensity から One Time InverseConsultation へ
- Authors: Shashwat Goel and Kunwar Shaanjeet Singh Grover
- Abstract要約: 本稿では、生のバイリンガル辞書を用いて新しい翻訳を生成する手法について述べる。
本稿では,2つの手法の知見を組み合わせたフレームワークとして,ACD(Augmented Cycle Density)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes an approach used to generate new translations using raw
bilingual dictionaries as part of the 4th Task Inference Across Dictionaries
(TIAD 2021) shared task. We propose Augmented Cycle Density (ACD) as a
framework that combines insights from two state of the art methods that require
no sense information and parallel corpora: Cycle Density (CD) and One Time
Inverse Consultation (OTIC). The task results show that across 3 unseen
language pairs, ACD's predictions, has more than double (74%) the coverage of
OTIC at almost the same precision (76%). ACD combines CD's scalability -
leveraging rich multilingual graphs for better predictions, and OTIC's data
efficiency - producing good results with the minimum possible resource of one
pivot language.
- Abstract(参考訳): 本稿では,第4タスク推論辞書(TIAD 2021)共有タスクの一部として,生のバイリンガル辞書を用いて新しい翻訳を生成する手法について述べる。
本稿では,感覚情報や並列コーパスを必要としない技術手法の2つの状態,すなわちサイクル密度(CD)とOne Time Inverse Consultation(OTIC)の知見を組み合わせたフレームワークとして,ACD(Augmented Cycle Density)を提案する。
タスク結果は、ACDの予測である3つの未確認言語ペアのうち、OTICのカバレッジがほぼ同じ精度(76%)で2倍以上(74%)であることを示している。
ACDは、より優れた予測のためにリッチな多言語グラフを平均化するCDのスケーラビリティと、OTICのデータ効率を組み合わせる。
関連論文リスト
- Select and Reorder: A Novel Approach for Neural Sign Language Production [35.35777909051466]
手話は、しばしば低リソース言語に分類されるが、正確な翻訳を実現する上で大きな課題に直面している。
本稿では,Select and Reorder(S&R)について紹介する。Gross Selection(GS)とGross Reordering(GR)の2つのステップに分割することで,データ不足に対処する新しいアプローチである。
我々は,Meine DGS Annotated (mDGS)データセット上で,最先端のBLEUとRogeスコアを達成し,テキスト・トゥ・グロス(T2G)翻訳において37.88%のBLUE-1が大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2024-04-17T16:25:19Z) - Zero-Shot Cross-Lingual Document-Level Event Causality Identification with Heterogeneous Graph Contrastive Transfer Learning [22.389718537939174]
事象因果同定(英: Event Causality Identification、ECI)とは、テキスト中の事象間の因果関係を検出すること。
文書レベルのECIのための多粒性コントラスト変換学習(GIMC)を用いた異種グラフ相互作用モデルを提案する。
筆者らのフレームワークは, 単言語および多言語シナリオの平均F1スコアの9.4%と8.2%で, 従来の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2024-03-05T11:57:21Z) - CL2CM: Improving Cross-Lingual Cross-Modal Retrieval via Cross-Lingual
Knowledge Transfer [23.58317401302547]
本稿では,言語間移動を用いた視覚と対象言語間のアライメントを改善する汎用フレームワークCL2CMを提案する。
提案手法は,Multi30KとMSCOCOの2つの多言語画像テキストデータセットと,ビデオテキストデータセットVATEXである。
論文 参考訳(メタデータ) (2023-12-14T14:29:53Z) - Dual-view Curricular Optimal Transport for Cross-lingual Cross-modal
Retrieval [57.98555925471121]
言語間のクロスモーダル検索が注目を集めている。
ほとんどのCCR手法は、機械翻訳を通して擬似並列視覚言語コーパスを構成する。
本稿では,CCRにおける雑音対応学習のためのDual-view Curricular Optimal Transport (DCOT)を提案する。
論文 参考訳(メタデータ) (2023-09-11T13:44:46Z) - Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
言語間のセマンティックパーシングは、高いソース言語(例えば英語)から少ないトレーニングデータを持つ低リソース言語へのパーシング能力を伝達する。
そこで本稿では,最適輸送を用いた係り受け変数間の言語間相違を明示的に最小化することで,言語間セマンティック解析のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-09T04:52:31Z) - VECO 2.0: Cross-lingual Language Model Pre-training with
Multi-granularity Contrastive Learning [56.47303426167584]
複数粒度アライメントを持つコントラスト学習に基づく言語間事前学習モデルVECO2.0を提案する。
具体的には、シーケンス・ツー・シーケンスアライメントが誘導され、並列対の類似性を最大化し、非並列対を最小化する。
トークン・ツー・トークンのアライメントは、シソーラス辞書を介して発掘された同義トークンと、バイリンガルな例の他の未使用トークンとのギャップを埋めるために統合される。
論文 参考訳(メタデータ) (2023-04-17T12:23:41Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - EAG: Extract and Generate Multi-way Aligned Corpus for Complete Multi-lingual Neural Machine Translation [63.88541605363555]
EAG(Extract and Generate)は,バイリンガルデータから大規模かつ高品質なマルチウェイアライメントコーパスを構築するための2段階のアプローチである。
まず、異なる言語対から、非常に類似したソースやターゲット文を持つバイリンガルな例をペアリングして、候補に整列した例を抽出する。
次に、よく訓練された生成モデルを用いて、候補から最終的な整列例を生成する。
論文 参考訳(メタデータ) (2022-03-04T08:21:27Z) - Improving Low-resource Reading Comprehension via Cross-lingual
Transposition Rethinking [0.9236074230806579]
Extractive Reading (ERC)は、大規模で高品質なERCトレーニングデータの提供によって、大幅に進歩した。
このような急速な進歩と広範囲の応用にもかかわらず、英語のような高リソース言語以外の言語のデータセットは依然として不足している。
多言語環境において,既存の高品質抽出読解データセットをモデル化し,XLTT(Cross-Lingual Transposition ReThinking)モデルを提案する。
論文 参考訳(メタデータ) (2021-07-11T09:35:16Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。