VisGraphNet: a complex network interpretation of convolutional neural
features
- URL: http://arxiv.org/abs/2108.12490v1
- Date: Fri, 27 Aug 2021 20:21:04 GMT
- Title: VisGraphNet: a complex network interpretation of convolutional neural
features
- Authors: Joao B. Florindo, Young-Sup Lee, Kyungkoo Jun, Gwanggil Jeon, Marcelo
K. Albertini
- Abstract summary: We propose and investigate the use of visibility graphs to model the feature map of a neural network.
The work is motivated by an alternative viewpoint provided by these graphs over the original data.
- Score: 6.50413414010073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Here we propose and investigate the use of visibility graphs to model the
feature map of a neural network. The model, initially devised for studies on
complex networks, is employed here for the classification of texture images.
The work is motivated by an alternative viewpoint provided by these graphs over
the original data. The performance of the proposed method is verified in the
classification of four benchmark databases, namely, KTHTIPS-2b, FMD, UIUC, and
UMD and in a practical problem, which is the identification of plant species
using scanned images of their leaves. Our method was competitive with other
state-of-the-art approaches, confirming the potential of techniques used for
data analysis in different contexts to give more meaningful interpretation to
the use of neural networks in texture classification.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
We assess attribution methods from a perspective not previously explored in the graph domain: retraining.
The core idea is to retrain the network on important (or not important) relationships as identified by the attributions.
We run our analysis on four state-of-the-art GNN attribution methods and five synthetic and real-world graph classification datasets.
arXiv Detail & Related papers (2024-01-01T02:03:35Z) - Classification of vertices on social networks by multiple approaches [1.370151489527964]
In the case of social networks, it is crucial to evaluate the labels of discrete communities.
For each of these interaction-based entities, a social graph, a mailing dataset, and two citation sets are selected as the testbench repositories.
This paper was not only assessed the most valuable method but also determined how graph neural networks work.
arXiv Detail & Related papers (2023-01-13T09:42:55Z) - Text Representation Enrichment Utilizing Graph based Approaches: Stock
Market Technical Analysis Case Study [0.0]
We propose a transductive hybrid approach composed of an unsupervised node representation learning model followed by a node classification/edge prediction model.
The proposed model is developed to classify stock market technical analysis reports, which to our knowledge is the first work in this domain.
arXiv Detail & Related papers (2022-11-29T11:26:08Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
The objective of image manipulation detection is to identify and locate the manipulated regions in the images.
Recent approaches mostly adopt the sophisticated Convolutional Neural Networks (CNNs) to capture the tampering artifacts left in the images.
We propose a hierarchical Graph Convolutional Network (HGCN-Net), which consists of two parallel branches.
arXiv Detail & Related papers (2022-01-15T01:54:25Z) - Graph Representation Learning for Spatial Image Steganalysis [11.358487655918678]
We introduce a graph representation learning architecture for spatial image steganalysis.
In the detailed architecture, we translate each image to a graph, where nodes represent the patches of the image and edges indicate the local associations between the patches.
By feeding the graph to an attention network, the discriminative features can be learned for efficient steganalysis.
arXiv Detail & Related papers (2021-10-03T09:09:08Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Learning Local Complex Features using Randomized Neural Networks for
Texture Analysis [0.1474723404975345]
We present a new approach that combines a learning technique and the Complex Network (CN) theory for texture analysis.
This method takes advantage of the representation capacity of CN to model a texture image as a directed network.
This neural network has a single hidden layer and uses a fast learning algorithm, which is able to learn local CN patterns for texture characterization.
arXiv Detail & Related papers (2020-07-10T23:18:01Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.