Dynamic Selection in Algorithmic Decision-making
- URL: http://arxiv.org/abs/2108.12547v3
- Date: Thu, 28 Sep 2023 01:21:27 GMT
- Title: Dynamic Selection in Algorithmic Decision-making
- Authors: Jin Li, Ye Luo, Xiaowei Zhang
- Abstract summary: This paper identifies and addresses dynamic selection problems in online learning algorithms with endogenous data.
A novel bias (self-fulfilling bias) arises because the endogeneity of the data influences the choices of decisions.
We propose an instrumental-variable-based algorithm to correct for the bias.
- Score: 9.172670955429906
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper identifies and addresses dynamic selection problems in online
learning algorithms with endogenous data. In a contextual multi-armed bandit
model, a novel bias (self-fulfilling bias) arises because the endogeneity of
the data influences the choices of decisions, affecting the distribution of
future data to be collected and analyzed. We propose an
instrumental-variable-based algorithm to correct for the bias. It obtains true
parameter values and attains low (logarithmic-like) regret levels. We also
prove a central limit theorem for statistical inference. To establish the
theoretical properties, we develop a general technique that untangles the
interdependence between data and actions.
Related papers
- Detecting and Identifying Selection Structure in Sequential Data [53.24493902162797]
We argue that the selective inclusion of data points based on latent objectives is common in practical situations, such as music sequences.
We show that selection structure is identifiable without any parametric assumptions or interventional experiments.
We also propose a provably correct algorithm to detect and identify selection structures as well as other types of dependencies.
arXiv Detail & Related papers (2024-06-29T20:56:34Z) - Counterfactual Fairness through Transforming Data Orthogonal to Bias [7.109458605736819]
We propose a novel data pre-processing algorithm, Orthogonal to Bias (OB)
OB is designed to eliminate the influence of a group of continuous sensitive variables, thus promoting counterfactual fairness in machine learning applications.
OB is model-agnostic, making it applicable to a wide range of machine learning models and tasks.
arXiv Detail & Related papers (2024-03-26T16:40:08Z) - Debiasing Machine Learning Models by Using Weakly Supervised Learning [3.3298048942057523]
We tackle the problem of bias mitigation of algorithmic decisions in a setting where both the output of the algorithm and the sensitive variable are continuous.
Typical examples are unfair decisions made with respect to the age or the financial status.
Our bias mitigation strategy is a weakly supervised learning method which requires that a small portion of the data can be measured in a fair manner.
arXiv Detail & Related papers (2024-02-23T18:11:32Z) - Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation [1.1530723302736279]
We study the problem of active sequential estimation, which involves adaptively selecting experiments for sequentially collected data.
The goal is to design experiment selection rules for more accurate model estimation.
We propose a class of greedy experiment selection methods and provide statistical analysis for the maximum likelihood.
arXiv Detail & Related papers (2024-02-13T17:09:29Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - Bounding Counterfactuals under Selection Bias [60.55840896782637]
We propose a first algorithm to address both identifiable and unidentifiable queries.
We prove that, in spite of the missingness induced by the selection bias, the likelihood of the available data is unimodal.
arXiv Detail & Related papers (2022-07-26T10:33:10Z) - Deep Active Learning with Noise Stability [24.54974925491753]
Uncertainty estimation for unlabeled data is crucial to active learning.
We propose a novel algorithm that leverages noise stability to estimate data uncertainty.
Our method is generally applicable in various tasks, including computer vision, natural language processing, and structural data analysis.
arXiv Detail & Related papers (2022-05-26T13:21:01Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Causal Reinforcement Learning: An Instrumental Variable Approach [8.881788084913147]
We show that the dynamic interaction between data generation and data analysis leads to a new type of bias -- reinforcement bias -- that exacerbates the endogeneity problem in standard data analysis.
A key contribution of the paper is the development of new techniques that allow for the analysis of the algorithms in general settings where noises feature time-dependency.
arXiv Detail & Related papers (2021-03-06T03:57:46Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.