Winners with Confidence: Discrete Argmin Inference with an Application to Model Selection
- URL: http://arxiv.org/abs/2408.02060v2
- Date: Wed, 04 Dec 2024 17:43:10 GMT
- Title: Winners with Confidence: Discrete Argmin Inference with an Application to Model Selection
- Authors: Tianyu Zhang, Hao Lee, Jing Lei,
- Abstract summary: We study the problem of finding the index of the minimum value of a vector noisy observations.
This problem is relevant in population/policy comparison, discrete maximum likelihood, and model selection.
We develop anally normal test statistic, even in high-dimensional settings.
- Score: 11.62889979871371
- License:
- Abstract: We study the problem of finding the index of the minimum value of a vector from noisy observations. This problem is relevant in population/policy comparison, discrete maximum likelihood, and model selection. We develop an asymptotically normal test statistic, even in high-dimensional settings and with potentially many ties in the population mean vector, by integrating concepts and tools from cross-validation and differential privacy. The key technical ingredient is a central limit theorem for globally dependent data. We also propose practical ways to select the tuning parameter that adapts to the signal landscape. Numerical experiments and data examples demonstrate the ability of the proposed method to achieve a favorable bias-variance trade-off in practical scenarios.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation [1.1530723302736279]
We study the problem of active sequential estimation, which involves adaptively selecting experiments for sequentially collected data.
The goal is to design experiment selection rules for more accurate model estimation.
We propose a class of greedy experiment selection methods and provide statistical analysis for the maximum likelihood.
arXiv Detail & Related papers (2024-02-13T17:09:29Z) - Anomaly Detection Under Uncertainty Using Distributionally Robust
Optimization Approach [0.9217021281095907]
Anomaly detection is defined as the problem of finding data points that do not follow the patterns of the majority.
The one-class Support Vector Machines (SVM) method aims to find a decision boundary to distinguish between normal data points and anomalies.
A distributionally robust chance-constrained model is proposed in which the probability of misclassification is low.
arXiv Detail & Related papers (2023-12-03T06:13:22Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - On the Computational Complexity of Private High-dimensional Model Selection [18.964255744068122]
We consider the problem of model selection in a high-dimensional sparse linear regression model under privacy constraints.
We propose an efficient Metropolis-Hastings algorithm and under certain regularity conditions, we establish that it enjoys mixing time to its stationary distribution.
arXiv Detail & Related papers (2023-10-11T19:53:15Z) - Mean Estimation with User-level Privacy under Data Heterogeneity [54.07947274508013]
Different users may possess vastly different numbers of data points.
It cannot be assumed that all users sample from the same underlying distribution.
We propose a simple model of heterogeneous user data that allows user data to differ in both distribution and quantity of data.
arXiv Detail & Related papers (2023-07-28T23:02:39Z) - Bayesian Hierarchical Models for Counterfactual Estimation [12.159830463756341]
We propose a probabilistic paradigm to estimate a diverse set of counterfactuals.
We treat the perturbations as random variables endowed with prior distribution functions.
A gradient based sampler with superior convergence characteristics efficiently computes the posterior samples.
arXiv Detail & Related papers (2023-01-21T00:21:11Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - A Causal Direction Test for Heterogeneous Populations [10.653162005300608]
Most causal models assume a single homogeneous population, an assumption that may fail to hold in many applications.
We show that when the homogeneity assumption is violated, causal models developed based on such assumption can fail to identify the correct causal direction.
We propose an adjustment to a commonly used causal direction test statistic by using a $k$-means type clustering algorithm.
arXiv Detail & Related papers (2020-06-08T18:59:14Z) - Marginal likelihood computation for model selection and hypothesis
testing: an extensive review [66.37504201165159]
This article provides a comprehensive study of the state-of-the-art of the topic.
We highlight limitations, benefits, connections and differences among the different techniques.
Problems and possible solutions with the use of improper priors are also described.
arXiv Detail & Related papers (2020-05-17T18:31:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.