論文の概要: Chaos embedded opposition based learning for gravitational search
algorithm
- arxiv url: http://arxiv.org/abs/2108.12610v1
- Date: Sat, 28 Aug 2021 09:22:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 22:56:54.619899
- Title: Chaos embedded opposition based learning for gravitational search
algorithm
- Title(参考訳): カオス組込み対位法に基づく重力探索アルゴリズムの学習
- Authors: Susheel Kumar Joshi
- Abstract要約: 本稿では,カオス埋め込み型対向学習をスタネーションフリー検索の基本GSAに組み込んだGSA変種を提案する。
提案された変種は、23の古典的ベンチマーク問題、CEC 2015テストスイートの15のテスト問題、CEC 2014テストスイートの15のテスト問題でテストされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Due to its robust search mechanism, Gravitational search algorithm (GSA) has
achieved lots of popularity from different research communities. However,
stagnation reduces its searchability towards global optima for rigid and
complex multi-modal problems. This paper proposes a GSA variant that
incorporates chaos-embedded opposition-based learning into the basic GSA for
the stagnation-free search. Additionally, a sine-cosine based chaotic
gravitational constant is introduced to balance the trade-off between
exploration and exploitation capabilities more effectively. The proposed
variant is tested over 23 classical benchmark problems, 15 test problems of CEC
2015 test suite, and 15 test problems of CEC 2014 test suite. Different
graphical, as well as empirical analyses, reveal the superiority of the
proposed algorithm over conventional meta-heuristics and most recent GSA
variants.
- Abstract(参考訳): その堅牢な探索機構のため、重力探索アルゴリズム(GSA)は様々な研究コミュニティから多くの人気を得ている。
しかし、スタグネーションは強固で複雑なマルチモーダル問題に対するグローバルオプティマへの探索性を低下させる。
本稿では, カオス組込みの対向学習を基本gsaに組み込んだ, スタギネーションフリー検索のためのgsa変種を提案する。
さらに,探索能力と搾取能力とのトレードオフをより効果的にバランスさせるために,サインコサイン系カオス重力定数が導入された。
提案された変種は、23の古典的ベンチマーク問題、CEC 2015テストスイートの15のテスト問題、CEC 2014テストスイートの15のテスト問題でテストされている。
グラフィカルな違いと経験的分析は、提案アルゴリズムが従来のメタヒューリスティックスや最近のGSAの変種よりも優れていることを示している。
関連論文リスト
- Stability and Generalization of the Decentralized Stochastic Gradient
Descent Ascent Algorithm [80.94861441583275]
本稿では,分散勾配勾配(D-SGDA)アルゴリズムの一般化境界の複雑さについて検討する。
本研究は,D-SGDAの一般化における各因子の影響を解析した。
また、最適凸凹設定を得るために一般化とバランスをとる。
論文 参考訳(メタデータ) (2023-10-31T11:27:01Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
TTA(Test-Time Adaptation)は、分散シフトの下で堅牢性に取り組むための有望なアプローチとして登場した。
TTABは,10の最先端アルゴリズム,多種多様な分散シフト,および2つの評価プロトコルを含むテスト時間適応ベンチマークである。
論文 参考訳(メタデータ) (2023-06-06T09:35:29Z) - Greedy Relaxations of the Sparsest Permutation Algorithm [4.125187280299247]
我々は, 忠実性よりもますます弱い仮定の下で, 効率的かつ点的に整合したアルゴリズム, GRaSP のクラスを開発する。
GRaSPの最も緩和された形式は、シミュレーションにおいて多くの最先端の因果探索アルゴリズムより優れている。
論文 参考訳(メタデータ) (2022-06-11T05:00:36Z) - A heuristic to determine the initial gravitational constant of the GSA [0.0]
本稿では,正規化重力定数(GSA-NGC)を用いた重力探索アルゴリズムを提案する。
GSA-NGCは、GSAの初期重力定数を決定するための新しい反復を定義する。
実験的に検証され、様々な用途に適合し、GSAの一般性、性能、効率を大幅に改善することが証明された。
論文 参考訳(メタデータ) (2022-04-21T21:38:13Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
両目的探索問題として結果の多様化問題を再構成し,多目的進化アルゴリズム(EA)を用いて解くことを提案する。
GSEMOが最適時間近似比1/2$を達成できることを理論的に証明する。
目的関数が動的に変化すると、GSEMOはこの近似比をランニングタイムで維持することができ、Borodinらによって提案されたオープンな問題に対処する。
論文 参考訳(メタデータ) (2021-10-18T14:00:22Z) - A binary variant of gravitational search algorithm and its application
to windfarm layout optimization problem [0.7734726150561088]
本稿では, 2次探索空間 (BNAGGSA) のための GSA 内に, 重力定数を埋め込んだ新しい近傍アーカイブ (A novel neighborhood Archives embedded gravity constants) を提案する。
提案アルゴリズムは、エージェントが最適なステップサイズで最適な方向に移動する自己適応的なステップサイズ機構を生成する。
実世界の応用における提案アルゴリズムの適用性を確認するために,風向配置最適化の問題を検討する。
論文 参考訳(メタデータ) (2021-07-25T16:56:19Z) - Geometric Entropic Exploration [52.67987687712534]
離散領域と連続領域の両方における状態ビジットの幾何認識シャノンエントロピーを最大化する新しいアルゴリズムを導入する。
私たちの重要な理論的貢献は、単純で新しいノイズコントラストの客観的関数を最適化する牽引可能な問題としてジオメトリ認識MSVE探索を鋳造することです。
実験では,他の深部RL探査手法と比較して,疎度な報酬を伴う複数のRL問題の解法におけるGEMの効率性を示した。
論文 参考訳(メタデータ) (2021-01-06T14:15:07Z) - AP-Loss for Accurate One-Stage Object Detection [49.13608882885456]
一段階の物体検出器は、分類損失と局所化損失を同時に最適化することによって訓練される。
前者は、多数のアンカーのため、非常に前景と後方のアンカーの不均衡に悩まされる。
本稿では,一段検知器の分類タスクをランキングタスクに置き換える新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-08-17T13:22:01Z) - Performance Analysis of Meta-heuristic Algorithms for a Quadratic
Assignment Problem [6.555180412600522]
二次代入問題 (QAP) はNPハード問題に属する最適化問題である。
ヒューリスティックスとメタヒューリスティックスアルゴリズムはこの問題の一般的な解法である。
本稿では,QAPの解法に異なるメタヒューリスティックアルゴリズムを適用するための比較研究の1つである。
論文 参考訳(メタデータ) (2020-07-29T15:02:07Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
SUNRISEは単純な統一アンサンブル法であり、様々な非政治的な深層強化学習アルゴリズムと互換性がある。
SUNRISEは, (a) アンサンブルに基づく重み付きベルマンバックアップと, (b) 最上位の自信境界を用いて行動を選択する推論手法を統合し, 効率的な探索を行う。
論文 参考訳(メタデータ) (2020-07-09T17:08:44Z) - Fuzzy Mutation Embedded Hybrids of Gravitational Search and Particle
Swarm Optimization Methods for Engineering Design Problems [37.260815721072525]
我々はGSAとPSOの2つのハイブリッドバージョンに対するファジィ突然変異モデルを提案した。
開発したアルゴリズムはMutation based GPS (MGPS) と Mutation based PSOGSA と呼ばれる。
我々はこれら2つの新しいアルゴリズムを3つのカテゴリの23のベンチマーク関数上で評価した(一様、多モード、固定次元のマルチモーダル)。
論文 参考訳(メタデータ) (2020-05-10T07:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。