論文の概要: Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution
- arxiv url: http://arxiv.org/abs/2108.12777v1
- Date: Sun, 29 Aug 2021 08:11:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-31 14:49:13.962538
- Title: Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution
- Title(参考訳): 効果的なディフェンダーの探索: 敵語置換に対する防御のベンチマーク
- Authors: Zongyi Li, Jianhan Xu, Jiehang Zeng, Linyang Li, Xiaoqing Zheng, Qi
Zhang, Kai-Wei Chang, Cho-Jui Hsieh
- Abstract要約: ディープニューラルネットワークは、意図的に構築された敵の例に対して脆弱である。
ニューラルNLPモデルに対する敵対的単語置換攻撃を防御する様々な方法が提案されている。
- 参考スコア(独自算出の注目度): 83.84968082791444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have shown that deep neural networks are vulnerable to
intentionally crafted adversarial examples, and various methods have been
proposed to defend against adversarial word-substitution attacks for neural NLP
models. However, there is a lack of systematic study on comparing different
defense approaches under the same attacking setting. In this paper, we seek to
fill the gap of systematic studies through comprehensive researches on
understanding the behavior of neural text classifiers trained by various
defense methods under representative adversarial attacks. In addition, we
propose an effective method to further improve the robustness of neural text
classifiers against such attacks and achieved the highest accuracy on both
clean and adversarial examples on AGNEWS and IMDB datasets by a significant
margin.
- Abstract(参考訳): 近年の研究では、ディープニューラルネットワークは意図的に構築された敵の例に弱いことが示されており、ニューラルNLPモデルに対する敵の単語置換攻撃を防御する様々な方法が提案されている。
しかし、同じ攻撃条件下で異なる防御アプローチを比較する体系的な研究が欠如している。
本稿では,様々な防御手法によって訓練されたニューラルネットワーク分類器の行動を理解するための包括的研究を通じて,システム研究のギャップを埋めることを目的とする。
さらに,このような攻撃に対するニューラルネットワーク分類器の堅牢性をさらに向上する有効な手法を提案し,AGNEWS と IMDB データセットのクリーン例と逆例の両方において高い精度を実現した。
関連論文リスト
- Detecting Adversarial Examples [24.585379549997743]
本稿では,Deep Neural Networks の層出力を解析して,敵のサンプルを検出する手法を提案する。
提案手法はDNNアーキテクチャと互換性が高く,画像,ビデオ,オーディオなど,さまざまな領域にまたがって適用可能である。
論文 参考訳(メタデータ) (2024-10-22T21:42:59Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - MPAT: Building Robust Deep Neural Networks against Textual Adversarial
Attacks [4.208423642716679]
本稿では,敵対的攻撃に対する堅牢な深層ニューラルネットワーク構築のための悪質な摂動に基づく敵対的訓練法を提案する。
具体的には、悪意のある摂動を伴う敵例を生成するために、多段階の悪意のあるサンプル生成戦略を構築する。
本研究では, 目標達成のために, 目標達成のための新たな訓練目標関数を, 本来のタスクの性能を損なうことなく採用する。
論文 参考訳(メタデータ) (2024-02-29T01:49:18Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - A Survey of Adversarial Defences and Robustness in NLP [26.299507152320494]
深層ニューラルネットワークは、入力データにおける敵の摂動に耐えるほど弾力性がないことが、ますます明らかになっている。
NLPにおける敵防御のためのいくつかの手法が提案され、異なるNLPタスクに対応している。
本調査は,過去数年間にNLPにおける敵防衛のために提案された様々な手法を,新しい分類法を導入して検討することを目的とする。
論文 参考訳(メタデータ) (2022-03-12T11:37:17Z) - A Review of Adversarial Attack and Defense for Classification Methods [78.50824774203495]
本稿では,敵対的事例の生成と保護に焦点をあてる。
この論文は、多くの統計学者が、この重要かつエキサイティングな分野において、敵の事例を生成・防御することを奨励するものである。
論文 参考訳(メタデータ) (2021-11-18T22:13:43Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
本稿では,様々な摂動レベルの攻撃に対して,仮定なしに防御できる汎用的対向検出手法であるTREATEDを提案する。
3つの競合するニューラルネットワークと2つの広く使われているデータセットの大規模な実験により、本手法はベースラインよりも優れた検出性能が得られることが示された。
論文 参考訳(メタデータ) (2021-09-13T03:31:20Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Defense of Word-level Adversarial Attacks via Random Substitution
Encoding [0.5964792400314836]
コンピュータビジョンタスクにおけるディープニューラルネットワークに対する敵対的な攻撃は、モデルを保護するための多くの新しい技術を生み出しました。
近年、自然言語処理(NLP)タスクの深層モデルに対する単語レベルの敵対攻撃は、例えば、感情分類ニューラルネットワークを騙して誤った判断を下すなど、強力な力を示している。
本稿ではランダム置換(Random Substitution RSE)という,ニューラルネットワークのトレーニングプロセスにランダム置換を導入する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-01T15:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。