論文の概要: TREATED:Towards Universal Defense against Textual Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2109.06176v1
- Date: Mon, 13 Sep 2021 03:31:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 07:46:17.262715
- Title: TREATED:Towards Universal Defense against Textual Adversarial Attacks
- Title(参考訳): TREATE:テキストの敵対的攻撃に対する普遍的防御に向けて
- Authors: Bin Zhu, Zhaoquan Gu, Le Wang and Zhihong Tian
- Abstract要約: 本稿では,様々な摂動レベルの攻撃に対して,仮定なしに防御できる汎用的対向検出手法であるTREATEDを提案する。
3つの競合するニューラルネットワークと2つの広く使われているデータセットの大規模な実験により、本手法はベースラインよりも優れた検出性能が得られることが示された。
- 参考スコア(独自算出の注目度): 28.454310179377302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work shows that deep neural networks are vulnerable to adversarial
examples. Much work studies adversarial example generation, while very little
work focuses on more critical adversarial defense. Existing adversarial
detection methods usually make assumptions about the adversarial example and
attack method (e.g., the word frequency of the adversarial example, the
perturbation level of the attack method). However, this limits the
applicability of the detection method. To this end, we propose TREATED, a
universal adversarial detection method that can defend against attacks of
various perturbation levels without making any assumptions. TREATED identifies
adversarial examples through a set of well-designed reference models. Extensive
experiments on three competitive neural networks and two widely used datasets
show that our method achieves better detection performance than baselines. We
finally conduct ablation studies to verify the effectiveness of our method.
- Abstract(参考訳): 最近の研究は、ディープニューラルネットワークが敵の例に弱いことを示している。
多くの研究は敵の例生成を研究しているが、より批判的な敵の防御に焦点を当てた研究はほとんどない。
既存の敵検出方法は、通常、敵の例と攻撃方法(例えば、敵の例の単語頻度、攻撃方法の摂動レベル)について仮定する。
しかし、これは検出方法の適用性に制限がある。
そこで本研究では,様々な摂動レベルの攻撃を想定することなく防御できる普遍的敵検出法であるtreatedを提案する。
TREATEDは、よく設計された参照モデルを通じて、敵の例を特定する。
3つの競合するニューラルネットワークと2つの広く使われているデータセットの大規模な実験により、本手法はベースラインよりも優れた検出性能が得られることが示された。
最後にアブレーション研究を行い,本手法の有効性を確認した。
関連論文リスト
- Detecting Adversarial Examples [24.585379549997743]
本稿では,Deep Neural Networks の層出力を解析して,敵のサンプルを検出する手法を提案する。
提案手法はDNNアーキテクチャと互換性が高く,画像,ビデオ,オーディオなど,さまざまな領域にまたがって適用可能である。
論文 参考訳(メタデータ) (2024-10-22T21:42:59Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
ディープニューラルネットワークは、意図的に構築された敵の例に対して脆弱である。
ニューラルNLPモデルに対する敵対的単語置換攻撃を防御する様々な方法が提案されている。
論文 参考訳(メタデータ) (2021-08-29T08:11:36Z) - Learning to Detect Adversarial Examples Based on Class Scores [0.8411385346896413]
我々は、すでに訓練済みの分類モデルのクラススコアに基づいて、敵の攻撃検出についてより詳しく検討する。
本稿では,SVM(Support Vector Machine)をクラススコアで学習し,逆例を検出することを提案する。
提案手法は,実装が容易でありながら,既存の手法と比較して検出率の向上を図っている。
論文 参考訳(メタデータ) (2021-07-09T13:29:54Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。
敵の強靭性は、敵の例を利用して改善することができる。
目に見えない種類の敵の例に基づいて訓練されたモデルは、一般的に、目に見えない種類の敵の例にうまく一般化できない。
論文 参考訳(メタデータ) (2021-06-09T12:49:54Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
この研究は、特定の攻撃アルゴリズムを知らずにASVの敵防衛を行う最初の試みの一つである。
本研究の目的は,1) 対向摂動浄化と2) 対向摂動検出の2つの視点から対向防御を行うことである。
実験の結果, 検出モジュールは, 約80%の精度で対向検体を検出することにより, ASVを効果的に遮蔽することがわかった。
論文 参考訳(メタデータ) (2021-06-01T07:10:54Z) - Adversarial Examples Detection beyond Image Space [88.7651422751216]
摂動と予測信頼の間にはコンプライアンスが存在することが分かり、予測信頼の面から少数の摂動攻撃を検出するための指針となる。
本研究では,画像ストリームが画素アーティファクトに注目し,勾配ストリームが信頼度アーティファクトに対応する2ストリームアーキテクチャによる画像空間を超えた手法を提案する。
論文 参考訳(メタデータ) (2021-02-23T09:55:03Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
ニューラルネットワークは、人間の視覚にほとんど受容できない敵の例に弱いことがよく確認されている。
既存の防衛は、敵の攻撃に対するモデルの堅牢性を強化する傾向にある。
本稿では,新たな雑音と組み合わせた新しい手法を提案し,不整合戦略を用いて敵のサンプルを検出する。
論文 参考訳(メタデータ) (2020-09-06T13:57:17Z) - Can We Mitigate Backdoor Attack Using Adversarial Detection Methods? [26.8404758315088]
我々は,Deep Neural Networksの敵対的事例とバックドア事例の関連性について包括的に研究する。
我々の知見は, 逆行例と逆行例の両方が推論過程中に異常を有するという観察に基づいている。
バックドアの事例を検出するために,既存の4つの対角防御法を改訂した。
論文 参考訳(メタデータ) (2020-06-26T09:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。