A Hybrid Rule-Based and Data-Driven Approach to Driver Modeling through
Particle Filtering
- URL: http://arxiv.org/abs/2108.12820v1
- Date: Sun, 29 Aug 2021 11:07:14 GMT
- Title: A Hybrid Rule-Based and Data-Driven Approach to Driver Modeling through
Particle Filtering
- Authors: Raunak Bhattacharyya, Soyeon Jung, Liam Kruse, Ransalu Senanayake, and
Mykel Kochenderfer
- Abstract summary: We propose a methodology that combines rule-based modeling with data-driven learning.
Our results show that driver models based on our hybrid rule-based and data-driven approach can accurately capture real-world driving behavior.
- Score: 6.9485501711137525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous vehicles need to model the behavior of surrounding human driven
vehicles to be safe and efficient traffic participants. Existing approaches to
modeling human driving behavior have relied on both data-driven and rule-based
methods. While data-driven models are more expressive, rule-based models are
interpretable, which is an important requirement for safety-critical domains
like driving. However, rule-based models are not sufficiently representative of
data, and data-driven models are yet unable to generate realistic traffic
simulation due to unrealistic driving behavior such as collisions. In this
paper, we propose a methodology that combines rule-based modeling with
data-driven learning. While the rules are governed by interpretable parameters
of the driver model, these parameters are learned online from driving
demonstration data using particle filtering. We perform driver modeling
experiments on the task of highway driving and merging using data from three
real-world driving demonstration datasets. Our results show that driver models
based on our hybrid rule-based and data-driven approach can accurately capture
real-world driving behavior. Further, we assess the realism of the driving
behavior generated by our model by having humans perform a driving Turing test,
where they are asked to distinguish between videos of real driving and those
generated using our driver models.
Related papers
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
arXiv Detail & Related papers (2024-04-30T23:18:51Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - An active inference model of car following: Advantages and applications [6.905724739762358]
Driver process models play a central role in the testing, verification, and development of automated and autonomous vehicle technologies.
Data-driven machine learning models are more capable than rule-based models but are limited by the need for large training datasets and their lack of interpretability.
We propose a novel car following modeling approach using active inference, which has comparable behavioral flexibility to data-driven models while maintaining interpretability.
arXiv Detail & Related papers (2023-03-27T13:39:26Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - Predicting Take-over Time for Autonomous Driving with Real-World Data:
Robust Data Augmentation, Models, and Evaluation [11.007092387379076]
We develop and train take-over time (TOT) models that operate on mid and high-level features produced by computer vision algorithms operating on different driver-facing camera views.
We show that a TOT model supported by augmented data can be used to produce continuous estimates of take-over times without delay.
arXiv Detail & Related papers (2021-07-27T16:39:50Z) - Action-Based Representation Learning for Autonomous Driving [8.296684637620551]
We propose to use action-based driving data for learning representations.
Our experiments show that an affordance-based driving model pre-trained with this approach can leverage a relatively small amount of weakly annotated imagery.
arXiv Detail & Related papers (2020-08-21T10:49:13Z) - Online Parameter Estimation for Human Driver Behavior Prediction [5.927030511296174]
We show that online parameter estimation applied to the Intelligent Driver Model captures nuanced individual driving behavior while providing collision free trajectories.
We evaluate the closeness of our driver model to ground truth data demonstration and also assess the safety of the resulting emergent driving behavior.
arXiv Detail & Related papers (2020-05-06T05:15:23Z) - An LSTM-Based Autonomous Driving Model Using Waymo Open Dataset [7.151393153761375]
This paper introduces an approach to learn a short-term memory (LSTM)-based model for imitating the behavior of a self-driving model.
The experimental results show that our model outperforms several models in driving action prediction.
arXiv Detail & Related papers (2020-02-14T05:28:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.