An active inference model of car following: Advantages and applications
- URL: http://arxiv.org/abs/2303.15201v1
- Date: Mon, 27 Mar 2023 13:39:26 GMT
- Title: An active inference model of car following: Advantages and applications
- Authors: Ran Wei, Anthony D. McDonald, Alfredo Garcia, Gustav Markkula, Johan
Engstrom, and Matthew O'Kelly
- Abstract summary: Driver process models play a central role in the testing, verification, and development of automated and autonomous vehicle technologies.
Data-driven machine learning models are more capable than rule-based models but are limited by the need for large training datasets and their lack of interpretability.
We propose a novel car following modeling approach using active inference, which has comparable behavioral flexibility to data-driven models while maintaining interpretability.
- Score: 6.905724739762358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Driver process models play a central role in the testing, verification, and
development of automated and autonomous vehicle technologies. Prior models
developed from control theory and physics-based rules are limited in automated
vehicle applications due to their restricted behavioral repertoire. Data-driven
machine learning models are more capable than rule-based models but are limited
by the need for large training datasets and their lack of interpretability,
i.e., an understandable link between input data and output behaviors. We
propose a novel car following modeling approach using active inference, which
has comparable behavioral flexibility to data-driven models while maintaining
interpretability. We assessed the proposed model, the Active Inference Driving
Agent (AIDA), through a benchmark analysis against the rule-based Intelligent
Driver Model, and two neural network Behavior Cloning models. The models were
trained and tested on a real-world driving dataset using a consistent process.
The testing results showed that the AIDA predicted driving controls
significantly better than the rule-based Intelligent Driver Model and had
similar accuracy to the data-driven neural network models in three out of four
evaluations. Subsequent interpretability analyses illustrated that the AIDA's
learned distributions were consistent with driver behavior theory and that
visualizations of the distributions could be used to directly comprehend the
model's decision making process and correct model errors attributable to
limited training data. The results indicate that the AIDA is a promising
alternative to black-box data-driven models and suggest a need for further
research focused on modeling driving style and model training with more diverse
datasets.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
arXiv Detail & Related papers (2024-04-30T23:18:51Z) - SubjectDrive: Scaling Generative Data in Autonomous Driving via Subject Control [59.20038082523832]
We present SubjectDrive, the first model proven to scale generative data production in a way that could continuously improve autonomous driving applications.
We develop a novel model equipped with a subject control mechanism, which allows the generative model to leverage diverse external data sources for producing varied and useful data.
arXiv Detail & Related papers (2024-03-28T14:07:13Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - IDM-Follower: A Model-Informed Deep Learning Method for Long-Sequence
Car-Following Trajectory Prediction [24.94160059351764]
Most car-following models are generative and only consider the inputs of the speed, position, and acceleration of the last time step.
We implement a novel structure with two independent encoders and a self-attention decoder that could sequentially predict the following trajectories.
Numerical experiments with multiple settings on simulation and NGSIM datasets show that the IDM-Follower can improve the prediction performance.
arXiv Detail & Related papers (2022-10-20T02:24:27Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
Key challenge for robotic systems is to figure out the behavior of another agent.
Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally.
We propose equipping robots with the necessary tools to conduct observational studies on people.
arXiv Detail & Related papers (2022-01-27T22:15:56Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - A Hybrid Rule-Based and Data-Driven Approach to Driver Modeling through
Particle Filtering [6.9485501711137525]
We propose a methodology that combines rule-based modeling with data-driven learning.
Our results show that driver models based on our hybrid rule-based and data-driven approach can accurately capture real-world driving behavior.
arXiv Detail & Related papers (2021-08-29T11:07:14Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing [2.40966076588569]
We develop and apply an iterative learning semi-parametric model, with a neural network, to the task of autonomous racing.
We show that our model can learn more accurately than a purely parametric model and generalize better than a purely non-parametric model.
arXiv Detail & Related papers (2020-11-17T16:24:10Z) - The Importance of Balanced Data Sets: Analyzing a Vehicle Trajectory
Prediction Model based on Neural Networks and Distributed Representations [0.0]
We investigate the composition of training data in vehicle trajectory prediction.
We show that the models employing our semantic vector representation outperform the numerical model when trained on an adequate data set.
arXiv Detail & Related papers (2020-09-30T20:00:11Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Modulation of viability signals for self-regulatory control [1.370633147306388]
We revisit the role of instrumental value as a driver of adaptive behavior.
For reinforcement learning tasks, the distribution of preferences replaces the notion of reward.
arXiv Detail & Related papers (2020-07-18T01:11:51Z) - A Taxonomy and Review of Algorithms for Modeling and Predicting Human
Driver Behavior [36.80532606715206]
We present a review and taxonomy of 200 models from the literature on driver behavior modeling.
We begin by introducing a mathematical framework for describing the dynamics of interactive multi-agent traffic.
Our taxonomy is constructed around the core modeling tasks of state estimation, intention estimation, trait estimation, and motion prediction.
arXiv Detail & Related papers (2020-06-15T23:53:45Z) - A Meta-Bayesian Model of Intentional Visual Search [0.0]
We propose a computational model of visual search that incorporates Bayesian interpretations of the neural mechanisms that underlie categorical perception and saccade planning.
To enable meaningful comparisons between simulated and human behaviours, we employ a gaze-contingent paradigm that required participants to classify occluded MNIST digits through a window that followed their gaze.
Our model is able to recapitulate human behavioural metrics such as classification accuracy while retaining a high degree of interpretability, which we demonstrate by recovering subject-specific parameters from observed human behaviour.
arXiv Detail & Related papers (2020-06-05T16:10:35Z) - Learning Opinion Dynamics From Social Traces [25.161493874783584]
We propose an inference mechanism for fitting a generative, agent-like model of opinion dynamics to real-world social traces.
We showcase our proposal by translating a classical agent-based model of opinion dynamics into its generative counterpart.
We apply our model to real-world data from Reddit to explore the long-standing question about the impact of backfire effect.
arXiv Detail & Related papers (2020-06-02T14:48:17Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z) - An LSTM-Based Autonomous Driving Model Using Waymo Open Dataset [7.151393153761375]
This paper introduces an approach to learn a short-term memory (LSTM)-based model for imitating the behavior of a self-driving model.
The experimental results show that our model outperforms several models in driving action prediction.
arXiv Detail & Related papers (2020-02-14T05:28:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.