論文の概要: Generating Answer Candidates for Quizzes and Answer-Aware Question
Generators
- arxiv url: http://arxiv.org/abs/2108.12898v1
- Date: Sun, 29 Aug 2021 19:33:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-31 15:03:15.462421
- Title: Generating Answer Candidates for Quizzes and Answer-Aware Question
Generators
- Title(参考訳): クイズの解答候補生成と解答用質問生成装置
- Authors: Kristiyan Vachev, Momchil Hardalov, Georgi Karadzhov, Georgi Georgiev,
Ivan Koychev, Preslav Nakov
- Abstract要約: そこで本研究では,テキストの文通しに対して,所定の数の回答候補を生成できるモデルを提案する。
実験の結果,提案する回答候補生成モデルは,いくつかのベースラインよりも優れていた。
- 参考スコア(独自算出の注目度): 16.44011627249311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In education, open-ended quiz questions have become an important tool for
assessing the knowledge of students. Yet, manually preparing such questions is
a tedious task, and thus automatic question generation has been proposed as a
possible alternative. So far, the vast majority of research has focused on
generating the question text, relying on question answering datasets with
readily picked answers, and the problem of how to come up with answer
candidates in the first place has been largely ignored. Here, we aim to bridge
this gap. In particular, we propose a model that can generate a specified
number of answer candidates for a given passage of text, which can then be used
by instructors to write questions manually or can be passed as an input to
automatic answer-aware question generators. Our experiments show that our
proposed answer candidate generation model outperforms several baselines.
- Abstract(参考訳): 教育において,オープンエンドのクイズ質問は,学生の知識を評価する重要なツールとなっている。
しかし,このような質問を手作業で作成するのは面倒な作業であり,代替案として自動質問生成が提案されている。
これまでのところ、ほとんどの研究は質問テキストの生成に重点を置いており、簡単に選択された回答を持つ質問応答データセットに依存しており、そもそもどのように回答候補を思いつくかという問題は無視されている。
ここではこのギャップを埋めることを目指しています。
特に,テキストの任意の節に対して特定の数の回答候補を生成できるモデルを提案し,それをインストラクタが手作業で質問を書けるか,あるいは自動回答認識質問生成器への入力として渡すことができるかを提案する。
実験の結果,提案する回答候補生成モデルは,いくつかのベースラインよりも優れていた。
関連論文リスト
- Auto FAQ Generation [0.0]
本稿では,FAQ文書を生成するシステムを提案する。
既存のテキスト要約、テキストランクアルゴリズムによる文章ランキング、質問生成ツールを用いて、質問と回答の初期セットを作成します。
論文 参考訳(メタデータ) (2024-05-13T03:30:27Z) - STaR-GATE: Teaching Language Models to Ask Clarifying Questions [32.71841885198304]
有用な質問を生成するために,言語モデルの自己改善能力について検討する。
25,500のユニークなペルソナ・タスク・プロンプトの合成データセットを生成する。
より良い質問をするために言語モデルを教えることは、よりパーソナライズされた回答につながる。
論文 参考訳(メタデータ) (2024-03-28T05:35:22Z) - Don't Just Say "I don't know"! Self-aligning Large Language Models for Responding to Unknown Questions with Explanations [70.6395572287422]
自己調整法は,回答を拒否するだけでなく,未知の質問の解答不能を説明できる。
我々は, LLM自体を微調整し, 未知の質問に対する応答を所望の通りに調整するために, 偏差駆動による自己計算を行い, 有資格データを選択する。
論文 参考訳(メタデータ) (2024-02-23T02:24:36Z) - Qsnail: A Questionnaire Dataset for Sequential Question Generation [76.616068047362]
質問紙作成作業に特化して構築された最初のデータセットについて述べる。
我々はQsnailの実験を行い、その結果、検索モデルと従来の生成モデルが与えられた研究トピックや意図と完全に一致していないことが明らかとなった。
チェーン・オブ・シークレット・プロンプトと微調整による改善にもかかわらず、言語モデルによるアンケートは、人間の手書きのアンケートには及ばない。
論文 参考訳(メタデータ) (2024-02-22T04:14:10Z) - Improving Question Generation with Multi-level Content Planning [70.37285816596527]
本稿では、与えられたコンテキストと回答から質問を生成する問題に対処し、特に拡張されたコンテキストをまたいだマルチホップ推論を必要とする質問に焦点をあてる。
具体的には、キーフレーズを同時に選択して完全な回答を生成するFA-modelと、生成した全回答を付加的な入力として取り込んだQ-modelの2つのコンポーネントを含む。
論文 参考訳(メタデータ) (2023-10-20T13:57:01Z) - Answering Ambiguous Questions with a Database of Questions, Answers, and
Revisions [95.92276099234344]
ウィキペディアから生成される曖昧な質問のデータベースを利用して、あいまいな質問に答えるための新しい最先端技術を提案する。
提案手法は,リコール対策で15%,予測出力から不明瞭な質問を評価する尺度で10%向上する。
論文 参考訳(メタデータ) (2023-08-16T20:23:16Z) - Conversational QA Dataset Generation with Answer Revision [2.5838973036257458]
本稿では,一節から質問に値するフレーズを抽出し,過去の会話を考慮し,それに対応する質問を生成する新しい枠組みを提案する。
本フレームワークでは,抽出した回答を質問生成後に修正し,その回答が一致した質問に正確に一致するようにした。
論文 参考訳(メタデータ) (2022-09-23T04:05:38Z) - Asking Questions Like Educational Experts: Automatically Generating
Question-Answer Pairs on Real-World Examination Data [10.353009081072992]
本稿では,実世界の検査データ上での質問応答対生成課題に対処し,RASに関する新たな統合フレームワークを提案する。
本稿では,質問文とキーフレーズを反復的に生成・最適化するマルチエージェント通信モデルを提案する。
実験結果から,質問応答対生成タスクにおいて,本モデルが大きなブレークスルーをもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2021-09-11T04:10:57Z) - A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers [66.11048565324468]
1,585の自然言語処理論文に関する5,049の質問のデータセットを提示する。
各質問は、対応する論文のタイトルと要約のみを読むNLP実践者によって書かれ、質問は全文に存在する情報を求めます。
他のQAタスクでうまく機能する既存のモデルは、これらの質問に答える上ではうまく機能せず、論文全体から回答する際には、少なくとも27 F1ポイントパフォーマンスが低下します。
論文 参考訳(メタデータ) (2021-05-07T00:12:34Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
InQUISITIVEは、文書を読みながら19K質問を抽出するデータセットである。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
我々は, GPT-2に基づく質問生成モデルを評価し, 妥当な質問を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-04T19:03:39Z) - Stay Hungry, Stay Focused: Generating Informative and Specific Questions
in Information-Seeking Conversations [41.74162467619795]
情報非対称な会話における情報的質問生成の問題について検討する。
実践的な質問を生成するために,情報量測定を最適化するために強化学習を用いる。
そこで本研究では,提案した実用的質問は,ベースラインモデル上で生成した質問の有意性と特異性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2020-04-30T00:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。