NeuroCartography: Scalable Automatic Visual Summarization of Concepts in
Deep Neural Networks
- URL: http://arxiv.org/abs/2108.12931v1
- Date: Sun, 29 Aug 2021 22:43:52 GMT
- Title: NeuroCartography: Scalable Automatic Visual Summarization of Concepts in
Deep Neural Networks
- Authors: Haekyu Park, Nilaksh Das, Rahul Duggal, Austin P. Wright, Omar Shaikh,
Fred Hohman, Duen Horng Chau
- Abstract summary: NeuroCartography is an interactive system that summarizes and visualizes concepts learned by neural networks.
It automatically discovers and groups neurons that detect the same concepts.
It describes how such neuron groups interact to form higher-level concepts and the subsequent predictions.
- Score: 18.62960153659548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing research on making sense of deep neural networks often focuses on
neuron-level interpretation, which may not adequately capture the bigger
picture of how concepts are collectively encoded by multiple neurons. We
present NeuroCartography, an interactive system that scalably summarizes and
visualizes concepts learned by neural networks. It automatically discovers and
groups neurons that detect the same concepts, and describes how such neuron
groups interact to form higher-level concepts and the subsequent predictions.
NeuroCartography introduces two scalable summarization techniques: (1) neuron
clustering groups neurons based on the semantic similarity of the concepts
detected by neurons (e.g., neurons detecting "dog faces" of different breeds
are grouped); and (2) neuron embedding encodes the associations between related
concepts based on how often they co-occur (e.g., neurons detecting "dog face"
and "dog tail" are placed closer in the embedding space). Key to our scalable
techniques is the ability to efficiently compute all neuron pairs'
relationships, in time linear to the number of neurons instead of quadratic
time. NeuroCartography scales to large data, such as the ImageNet dataset with
1.2M images. The system's tightly coordinated views integrate the scalable
techniques to visualize the concepts and their relationships, projecting the
concept associations to a 2D space in Neuron Projection View, and summarizing
neuron clusters and their relationships in Graph View. Through a large-scale
human evaluation, we demonstrate that our technique discovers neuron groups
that represent coherent, human-meaningful concepts. And through usage
scenarios, we describe how our approaches enable interesting and surprising
discoveries, such as concept cascades of related and isolated concepts. The
NeuroCartography visualization runs in modern browsers and is open-sourced.
Related papers
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Interpreting the Second-Order Effects of Neurons in CLIP [73.54377859089801]
We interpret the function of individual neurons in CLIP by automatically describing them using text.
We present the "second-order lens", analyzing the effect flowing from a neuron through the later attention heads, directly to the output.
Our results indicate that a scalable understanding of neurons can be used for model deception and for introducing new model capabilities.
arXiv Detail & Related papers (2024-06-06T17:59:52Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Learn to integrate parts for whole through correlated neural variability [8.173681663544757]
Sensory perception originates from the responses of sensory neurons, which react to a collection of sensory signals linked to physical attributes of a singular perceptual object.
Unraveling how the brain extracts perceptual information from these neuronal responses is a pivotal challenge in both computational neuroscience and machine learning.
We introduce a statistical mechanical theory, where perceptual information is first encoded in the correlated variability of sensory neurons and then reformatted into the firing rates of downstream neurons.
arXiv Detail & Related papers (2024-01-01T13:05:29Z) - Identifying Interpretable Visual Features in Artificial and Biological
Neural Systems [3.604033202771937]
Single neurons in neural networks are often interpretable in that they represent individual, intuitively meaningful features.
Many neurons exhibit $textitmixed selectivity$, i.e., they represent multiple unrelated features.
We propose an automated method for quantifying visual interpretability and an approach for finding meaningful directions in network activation space.
arXiv Detail & Related papers (2023-10-17T17:41:28Z) - Cones: Concept Neurons in Diffusion Models for Customized Generation [41.212255848052514]
This paper finds a small cluster of neurons in a diffusion model corresponding to a particular subject.
The concept neurons demonstrate magnetic properties in interpreting and manipulating generation results.
For large-scale applications, the concept neurons are environmentally friendly as we only need to store a sparse cluster of int index instead of dense float32 values.
arXiv Detail & Related papers (2023-03-09T09:16:04Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
How neural networks in the human brain represent commonsense knowledge is an important research topic in neuroscience, cognitive science, psychology, and artificial intelligence.
This work investigates how population encoding and spiking timing-dependent plasticity (STDP) mechanisms can be integrated into the learning of spiking neural networks.
The neuron populations of different communities together constitute the entire commonsense knowledge graph, forming a giant graph spiking neural network.
arXiv Detail & Related papers (2022-07-11T05:22:38Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Drop, Swap, and Generate: A Self-Supervised Approach for Generating
Neural Activity [33.06823702945747]
We introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE.
Our approach combines a generative modeling framework with an instance-specific alignment loss.
We show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior.
arXiv Detail & Related papers (2021-11-03T16:39:43Z) - Compositional Explanations of Neurons [52.71742655312625]
We describe a procedure for explaining neurons in deep representations by identifying compositional logical concepts.
We use this procedure to answer several questions on interpretability in models for vision and natural language processing.
arXiv Detail & Related papers (2020-06-24T20:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.